Abstract

Generation interior vehicle personal sound zone (PSZ) has great application prospects since it can meet the listening requirements of different people without causing interference to other people. Acoustic contrast, signal distortion, and array effort are often used to measure the performance of the PSZ system. However, these three indicators cannot reach their optimal values simultaneously. To obtain optimal performance in one aspect, it is necessary to reduce the other two indicators at a cost. Therefore, when designing the PSZ system, these three indicators must be balanced so that the comprehensive performance of the PSZ system can be optimized. Combining the power constraints of the speaker array, based on the Non-dominated Genetic Algorithm II (NSGA-II), a multiobjective optimal control method PSZ-MOGA is proposed for the generation interior vehicle PSZ, which is used to optimize the three performance indices comprehensively. In addition, the mixed speaker array is used for the reproduction of the sound field. The results show that the proposed PSZ-MOGA method improves the reproduction accuracy of the bright zones compared to the acoustic contrast control methods and also enhances the acoustic contrast (AC) while achieving lower array power consumption compared to the pressure matching method.

References

1.
Choi
,
J. W.
, and
Kim
,
Y. H.
,
2002
, “
Generation of an Acoustically Bright Zone With an Illuminated Region Using Multiple Sources
,”
J. Acoust. Soc. Am.
,
111
(
4
), pp.
1695
1700
.
2.
Poletti
,
M.
,
2008
, “
An Investigation of 2-d Multizone Surround Sound Systems
,”
Audio Engineering Society Convention 125
,
San Francisco, CA
.
3.
Chang
,
J. H.
, and
Jacobsen
,
F.
,
2012
, “
Sound Field Control With a Circular Double-Layer Array of Loudspeakers
,”
J. Acoust. Soc. Am.
,
131
(
6
), pp.
4518
4525
.
4.
Shi
,
L.
,
Lee
,
T.
,
Zhang
,
L.
,
Nielsen
,
J. K.
, and
Christensen
,
M. G.
,
2020
, “
A Fast Reduced-Rank Sound Zone Control Algorithm Using the Conjugate Gradient Method
,”
Proceedings of the 2020 IEEE ICASSP
,
Barcelona, Spain
,
May 4–8
.
5.
Shi
,
L.
,
Lee
,
T.
,
Zhang
,
L.
,
Nielsen
,
J. K.
, and
Christensen
,
M. G.
,
2021
, “
Generation of Personal Sound Zones With Physical Meaningful Constraints and Conjugate Gradient Method
,”
IEEE/ACM Trans. Audio, Speech, Lang. Process.
,
29
(
1
), pp.
823
837
.
6.
Brunnström
,
J.
,
Koyama
,
S.
, and
Moonen
,
M.
,
2022
, “
Variable Span Trade-off Filter for Sound Zone Control With Kernel Interpolation Weighting
,”
ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
,
Singapore
,
May 23–27
, pp.
1071
1075
.
7.
Zhang
,
W.
,
Zhang
,
J.
,
Abhayapala
,
T. D.
, and
Zhang
,
L.
,
2018
, “
2.5 D Multizone Reproduction Using Weighted Mode Matching
,”
2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
,
Calgary, AB, Canada
,
Apr. 15–20
, pp.
476
480
.
8.
Koyama
,
S.
,
Amakasu
,
T.
,
Ueno
,
N.
, and
Saruwatari
,
H.
,
2021
, “
Amplitude Matching: Majorization–Minimization Algorithm for Sound Field Control Only With Amplitude Constraint
,”
ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
,
Toronto, ON, Canada
,
June 6–11
, pp.
411
415
.
9.
Coleman
,
P.
,
Jackson
,
P. J.
,
Olik
,
M.
,
Møller
,
M.
,
Olsen
,
M.
, and
Abildgaard Pedersen
,
J.
,
2014
, “
Acoustic Contrast, Planarity and Robustness of Sound Zone Methods Using a Circular Loudspeaker Array
,”
J. Acoust. Soc. Am.
,
135
(
4
), pp.
1929
1940
.
10.
Lee
,
T.
,
Shi
,
L.
,
Nielsen
,
J. K.
, and
Christensen
,
M. G.
,
2020
, “
Fast Generation of Sound Zones Using Variable Span Trade-off Filters in the DFT-Domain
,”
IEEE/ACM Trans. Audio, Speech, Lang. Process.
,
29
, pp.
363
378
.
11.
Cai
,
Y.
,
Wu
,
M.
, and
Yang
,
J.
,
2014
, “
Sound Reproduction in Personal Audio Systems Using the Least-Squares Approach With Acoustic Contrast Control Constraint
,”
J. Acoust. Soc. Am.
,
135
(
2
), pp.
734
741
.
12.
Hu
,
M.
,
Zou
,
H.
,
Lu
,
J.
, and
Christensen
,
M. G.
,
2022
, “
Maximizing the Acoustic Contrast With Constrained Reconstruction Error Under a Generalized Pressure Matching Framework in Sound Zone Control
,”
J. Acoust. Soc. Am.
,
151
(
4
), pp.
2751
2759
.
13.
Cheng
,
J.
,
Gao
,
H.
,
Pan
,
K.
,
Feng
,
X.
, and
Shen
,
Y.
,
2023
, “
Multi-Objective Optimization for Generation of Personal Sound Zone
,”
J. Acoust. Soc. Am.
,
153
(
1
), pp.
149
158
.
14.
Cheer
,
J.
, and
Elliott
,
S.
,
2013
, “
Design and Implementation of a Personal Audio System in a Car Cabin
,”
Proceedings of Meetings on Acoustics (Vol. 19, No. 1)
,
Montreal, Canada
,
June 2–7
.
15.
Peng
,
B.
,
Zheng
,
S.
,
Liao
,
X.
, and
Lian
,
X.
,
2018
, “
On the Optimization of a Mixed Speaker Array in an Enclosed Space Using the Virtual-Speaker Weighting Method
,”
Mech. Syst. Signal Process.
,
102
(
2
), pp.
214
229
.
16.
Zhao
,
S.
, and
Burnett
,
I. S.
,
2022
, “
Evolutionary Array Optimization for Multizone Sound Field Reproduction
,”
J. Acoust. Soc. Am.
,
151
(
4
), pp.
2791
2801
.
17.
Gao
,
H.
,
Feng
,
X.
, and
Shen
,
Y.
,
2022
, “
Weighted Loudspeaker Placement Method for Sound Field Reproduction
,”
IEEE/ACM Trans. Audio, Speech, Lang. Process.
,
30
(
3
), pp.
1263
1276
.
18.
Stuart
,
J. R.
,
Hollinshead
,
R.
, and
Capp
,
M.
,
2019
, “
Is High-Frequency Intermodulation Distortion a Significant Factor in High-Resolution Audio?
,”
J. Audio Eng. Soc.
,
67
(
5
), pp.
310
318
.
19.
Thipmaungprom
,
Y.
,
2023
, “
Intermodulation Distortions From a Chain of Coupled Nonlinear Oscillators Near a Hopf Bifurcation
,” Dissertation,
Chulalongkorn University
,
Bangkok, Thailand
, pp.
22
41
.
20.
Zhu
,
M.
, and
Zhao
,
S.
,
2021
, “
An Iterative Approach to Optimize Loudspeaker Placement for Multi-Zone Sound Field Reproduction
,”
J. Acoust. Soc. Am.
,
149
(
5
), pp.
3462
3468
.
21.
Murugan
,
P.
,
Kannan
,
S.
, and
Baskar
,
S.
,
2009
, “
NSGA-II Algorithm for Multi-Objective Generation Expansion Planning Problem
,”
Electr. Power Syst. Res.
,
79
(
4
), pp.
622
628
.
22.
Druyvesteyn
,
W. F.
, and
Garas
,
J.
,
1997
, “
Personal Sound
,”
Audio Eng. Soc. Convent.
,
45(9)
, pp.
685
701
.
23.
Sałabun
,
W.
,
Watróbski
,
J.
, and
Shekhovtsov
,
A.
,
2020
, “
Are MCDA Methods Benchmarkable? A Comparative Study of TOPSIS, VIKOR, COPRAS, and PROMETHEE II Methods
,”
Symmetry
,
12
(
9
), p.
1549
.
24.
Lopez
,
J. J.
,
Gutierrez-Parera
,
P.
, and
Savioja
,
L.
,
2020
, “
Effects and Applications of Spatial Acuity in Advanced Spatial Audio Reproduction Systems With Loudspeakers
,”
Appl. Acoust.
,
161
(
4
), p.
107179
.
You do not currently have access to this content.