Abstract

Deformation and stress fields in a curved beam can be tailored by changing its mechanical properties such as the elastic modulus/mass density, which is typically done using functionally graded materials (FGM). Such functional gradation can be done, for instance, by using particles or fiber-reinforced materials with different volume fractions along the beam length. This article presents in-plane vibrations of functionally graded (FG) cantilevered curved beams. Both semi-analytical and finite element modeling are employed to find natural frequencies and mode shapes of such beams. The natural frequencies obtained from the analytical solution and finite element analysis are in close agreement with an error of 6.2% when the variance of material properties gradation is relatively small. In the analytical approach, the direct method is employed to derive the governing linear differential equations of motion. The natural frequencies and mode shapes are obtained using the Galerkin and the finite element methods. First, three natural frequencies and corresponding mode shapes are analyzed for different elastic modulus/mass density distribution functions. Furthermore, the natural frequencies of FG curved beams with a crack are also investigated. Our results indicate that larger cracks near the clamped side of the beam significantly decrease the first natural frequency. In the second and third vibration modes, cracks located in the area with a maximum moment result in the lowest natural frequency values. However, the second and third natural frequencies of the cracked curved beam are not affected by the presence of a crack, if the crack is located at the nodal points of the curved beam.

References

1.
Bayraktar
,
H.
,
Ehrlich
,
D.
,
Goering
,
J.
, and
Mcclain
,
M.
,
2015
, “
3D Woven Composites for Energy Absorbing Applications
,”
20th International Conference on Composite Materials
, pp.
19
24
.
2.
Laura
,
P. A. A.
,
de Irassar PL
,
V.
,
Carnicer
,
R.
, and
Bertero
,
R.
,
1988
, “
A Note on Vibrations of a Circumferential Arch With Thickness Varying in a Discontinuous Fashion
,”
J. Sound Vib.
,
120
(
1
), pp.
95
105
.
3.
Malekzadeh
,
P.
,
Atashi
,
M. M.
, and
Karami
,
G.
,
2009
, “
In-Plane Free Vibration of Functionally Graded Circular Arches With Temperature-Dependent Properties Under Thermal Environment
,”
J. Sound Vib.
,
326
(
3–5
), pp.
837
851
.
4.
Ouakad
,
H. M.
, and
Younis
,
M. I.
,
2014
, “
On Using the Dynamic Snap-Through Motion of MEMS Initially Curved Microbeams for Filtering Applications
,”
J. Sound Vib.
,
333
(
2
), pp.
555
568
.
5.
Das
,
K.
, and
Batra
,
R. C.
,
2009
, “
Symmetry Breaking, Snap-Through and Pull-In Instabilities Under Dynamic Loading of Microelectromechanical Shallow Arches
,”
Smart Mater. Struct.
,
18
(
11
), p.
115008
.
6.
Li
,
Y.
,
Feng
,
Z.
,
Hao
,
L.
,
Huang
,
L.
,
Xin
,
C.
,
Wang
,
Y.
,
Bilotti
,
E.
, et al
,
2020
, “
A Review on Functionally Graded Materials and Structures via Additive Manufacturing: From Multi-Scale Design to Versatile Functional Properties
,”
Adv. Mater. Technol.
,
5
(
6
), pp.
1900981
.
7.
Kumar
,
S.
,
Murthy Reddy
,
K. V. V. S.
,
Kumar
,
A.
, and
Rohini Devi
,
G.
,
2013
, “
Development and Characterization of Polymer–Ceramic Continuous Fiber Reinforced Functionally Graded Composites for Aerospace Application
,”
Aerosp. Sci. Technol.
,
26
(
1
), pp.
185
191
.
8.
Hu
,
S.
,
Gagnoud
,
A.
,
Fautrelle
,
Y.
,
Moreau
,
R.
, and
Li
,
X.
,
2018
, “
Fabrication of Aluminum Alloy Functionally Graded Material Using Directional Solidification Under an Axial Static Magnetic Field
,”
Sci. Rep.
,
8
(
1
), pp.
1
13
.
9.
Park
,
J.
,
Park
,
K.
,
Kim
,
J.
,
Jeong
,
Y.
,
Kawasaki
,
A.
, and
Kwon
,
H.
,
2016
, “
Fabrication of a Functionally Graded Copper-Zinc Sulfide Phosphor
,”
Sci. Rep.
,
6
(
1
), pp.
1
6
.
10.
Song
,
J.
,
Chew
,
Y.
,
Jiao
,
L.
,
Yao
,
X.
,
Moon
,
S. K.
, and
Bi
,
G.
,
2018
, “
Numerical Study of Temperature and Cooling Rate in Selective Laser Melting With Functionally Graded Support Structures
,”
Addit. Manuf.
,
24
, pp.
543
551
.
11.
Loy
,
C. T.
,
Lam
,
K. Y.
, and
Reddy
,
J. N.
,
1999
, “
Vibration of Functionally Graded Cylindrical Shells
,”
Int. J. Mech. Sci.
,
41
(
3
), pp.
309
324
.
12.
Salem
,
T.
,
Jiao
,
P.
,
Zaabar
,
I.
,
Li
,
X.
,
Zhu
,
R.
, and
Lajnef
,
N.
,
2021
, “
Functionally Graded Materials Beams Subjected to Bilateral Constraints: Structural Instability and Material Topology
,”
Int. J. Mech. Sci.
,
194
, p.
106218
.
13.
Chen
,
D.
,
Yang
,
J.
, and
Kitipornchai
,
S.
,
2016
, “
Free and Forced Vibrations of Shear Deformable Functionally Graded Porous Beams
,”
Int. J. Mech. Sci.
,
108–109
, pp.
14
22
.
14.
Li
,
S. H.
, and
Ren
,
J. Y.
,
2018
, “
Analytical Study on Dynamic Responses of a Curved Beam Subjected to Three-Directional Moving Loads
,”
Appl. Math. Modell.
,
58
, pp.
365
387
.
15.
Bahranifard
,
F.
,
Golbahar Haghighi
,
M. R.
, and
Malekzadeh
,
P.
,
2020
, “
In-Plane Responses of Multilayer FG-GPLRC Curved Beams in Thermal Environment Under Moving Load
,”
Acta Mech.
,
231
(
7
), pp.
2679
2696
.
16.
Li
,
X. F.
,
2008
, “
A Unified Approach for Analyzing Static and Dynamic Behaviors of Functionally Graded Timoshenko and Euler-Bernoulli Beams
,”
J. Sound Vib.
,
318
(
4–5
), pp.
1210
1229
.
17.
Tufekci
,
E.
,
Eroglu
,
U.
, and
Aya
,
S. A.
,
2016
, “
Exact Solution for In-Plane Static Problems of Circular Beams Made of Functionally Graded Materials
,”
Mech. Based Des. Struct. Mach.
,
44
(
4
), pp.
476
494
.
18.
Su
,
Z.
,
Jin
,
G.
, and
Ye
,
T.
,
2016
, “
Vibration Analysis and Transient Response of a Functionally Graded Piezoelectric Curved Beam With General Boundary Conditions
,”
Smart Mater. Struct.
,
25
(
6
), p.
065003
.
19.
Hosseini
,
S. A. H.
, and
Rahmani
,
O.
,
2016
, “
Thermomechanical Vibration of Curved Functionally Graded Nanobeam Based on Nonlocal Elasticity
,”
J. Therm. Stress.
,
39
(
10
), pp.
1252
1267
.
20.
Oh
,
Y.
, and
Yoo
,
H. H.
,
2016
, “
Vibration Analysis of Rotating Pretwisted Tapered Blades Made of Functionally Graded Materials
,”
Int. J. Mech. Sci.
,
119
, pp.
68
79
.
21.
Birman
,
V.
, and
Byrd
,
L. W.
,
2007
, “
Modeling and Analysis of Functionally Graded Materials and Structures
,”
Appl. Mech. Rev.
,
60
(
1–6
), pp.
195
216
.
22.
Tsiatas
,
G. C.
, and
Charalampakis
,
A. E.
,
2017
, “
Optimizing the Natural Frequencies of Axially Functionally Graded Beams and Arches
,”
Compos. Struct.
,
160
, pp.
256
266
.
23.
Temel
,
B.
, and
Noori
,
A. R.
,
2019
, “
Out-of-Plane Vibrations of Shear-Deformable AFG Cycloidal Beams With Variable Cross Section
,”
Appl. Acoust.
,
155
, pp.
84
96
.
24.
Zheng
,
D. Y.
, and
Kessissoglou
,
N. J.
,
2004
, “
Free Vibration Analysis of a Cracked Beam by Finite Element Method
,”
J. Sound Vib.
,
273
(
3
), pp.
457
475
.
25.
Barr
,
A. D. S.
,
1964
, “
An Extension of the hu-Washizu Variational Principle in Linear Elasticity for Dynamic Problems
,”
ASME J. Appl. Mech.
,
33
(
2
), pp.
465
466
.
26.
Chondros
,
T. G.
,
Dimarogonas
,
A. D.
, and
Yao
,
J.
,
1998
, “
A Continuous Cracked Beam Vibration Theory
,”
J. Sound Vib.
,
215
(
1
), pp.
17
34
.
27.
Karaagac
,
C.
,
Ozturk
,
H.
, and
Sabuncu
,
M.
,
2011
, “
Crack Effects on the In-Plane Static and Dynamic Stabilities of a Curved Beam With an Edge Crack
,”
J. Sound Vib.
,
330
(
8
), pp.
1718
1736
.
28.
Mahmoud
,
M. A.
, and
Abou Zaid
,
M. A.
,
2002
, “
Dynamic Response of a Beam With a Crack Subject to a Moving Mass
,”
J. Sound Vib.
,
256
(
4
), pp.
591
603
.
29.
Nahvi
,
H.
, and
Jabbari
,
M.
,
2005
, “
Crack Detection in Beams Using Experimental Modal Data and Finite Element Model
,”
Int. J. Mech. Sci.
,
47
(
10
), pp.
1477
1497
.
30.
Zare
,
M.
,
2018
, “
Free in-Plane Vibration of Cracked Curved Beams: Experimental, Analytical, and Numerical Analyses
,”
Proc. Inst. Mech. Eng., Part C
,
233
(
3
), pp.
928
946
.
31.
Öz
,
H. R.
, and
Daş
,
M. T.
,
2006
, “
In-Plane Vibrations of Circular Curved Beams With a Transverse Open Crack
,”
Math. Comput. Appl.
,
11
(
1
), pp.
1
10
.
32.
Krawczuk
,
M.
, and
Ostachowicz
,
W.
,
1997
, “
Natural Vibrations of a Clamped-Clamped Arch With an Open Transverse Crack
,”
ASME J. Vib. Acoust.
,
119
(
2
), pp.
145
151
.
33.
Eroglu
,
U.
,
Ruta
,
G.
, and
Tufekci
,
E.
,
2019
, “
Natural Frequencies of Parabolic Arches With a Single Crack on Opposite Cross-Section Sides
,”
J. Vib. Control
,
25
(
7
), pp.
1313
1325
.
34.
Grujicic
,
M.
, and
Zhang
,
Y.
,
1998
, “
Determination of Effective Elastic Properties of Functionally Graded Materials Using Voronoi Cell Finite Element Method
,”
Mater. Sci. Eng., A.
,
251
(
1–2
), pp.
64
76
.
35.
Ajdari
,
A.
,
Canavan
,
P.
,
Nayeb-Hashemi
,
H.
, and
Warner
,
G.
,
2009
, “
Mechanical Properties of Functionally Graded 2-D Cellular Structures: A Finite Element Simulation
,”
Mater. Sci. Eng., A
,
499
(
1–2
), pp.
434
439
.
36.
Chati
,
M.
,
Rand
,
R.
, and
Mukherjee
,
S.
,
1997
, “
Modal Analysis of a Cracked Beam
,”
J. Sound Vib.
,
207
(
2
), pp.
249
270
.
37.
Tien
,
M. H.
, and
D’Souza
,
K.
,
2017
, “
A Generalized Bilinear Amplitude and Frequency Approximation for Piecewise-Linear Nonlinear Systems With Gaps or Prestress
,”
Nonlinear Dyn.
,
88
(
4
), pp.
2403
2416
.
38.
Saito
,
A.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2009
, “
Estimation and Veering Analysis of Nonlinear Resonant Frequencies of Cracked Plates
,”
J. Sound Vib.
,
326
(
3–5
), pp.
725
739
.
39.
Petyt
,
M.
, and
Fleischer
,
C. C.
,
1971
, “
Free Vibration of a Curved Beam
,”
J. Sound Vib.
,
18
(
1
), pp.
17
30
.
You do not currently have access to this content.