Abstract

The current study investigates the noise generation of an orifice jet upon impingement over different corrugated geometries for different nozzle pressure ratios (NPRs). Semi-circular corrugations of different pitch lengths are considered for this study. A comparison of corrugated geometries is made with the flat plate. A standoff distance of 3.5 times jet diameter is considered during the experiment. The noise propagation at the far-field is observed using a far-field microphone. Several tones and their harmonics of the feedback loops established between the orifice exit and the plates are analyzed. The acoustic spectra show that the corrugated geometries emit less noise at subsonic speed compared to supersonic speed. A reduction of overall sound pressure level (OASPL) up to a range of 3–8 dB is observed for the corrugated plate compared to the base plate at the subsonic range. The tonal noise is reduced for the corrugated geometries at all NPRs. The wavelength of the primary tones is compared with the pitch length of semi-circular corrugations. Schlieren images show the presence of the acoustic feedback loop and standing waves near the impingement region for the flat plate. The flow field in between the semi-circular corrugations is analyzed by solving the large eddy simulation. The directivity study shows a reduction in OASPL value at the upstream direction at NPR 4 and 4.8 for the corrugated geometries.

References

1.
Kotansky
,
D. R.
, and
Bower
,
W. W.
,
1978
, “
A Basic Study of VTOL Ground Effect Problem for Planar Flow
,”
J. Aircr.
,
15
(
4
), pp.
214
215
.
2.
Powell
,
A.
,
1953
, “
On the Mechanism of Choked Jet Noise
,”
Proc. Phys. Soc. Lond.
,
66
(
12
), pp.
1039
1057
.
3.
Marsh
,
A.
,
1961
, “
Noise Measurements Around a Subsonic Air Jet Impinging on a Plane Rigid Surface
,”
J. Acoust. Soc. Am.
,
33
(
8
), pp.
1065
1066
.
4.
Morch
,
K. A.
,
1964
, “
A Theory for the Mode of Operation of the Hartmann Air Jet Generator
,”
J. Fluid Mech.
,
20
(
1
), pp.
141
159
.
5.
Wagner
,
F. R.
,
1971
, “
The Sound and Flow Field of an Axially Symmetric Free Jet Upon Impact on a Wall
,” National Aeronautics and Space Administration Technical Translation F-13942.
6.
Lau
,
J. C.
,
1972
, “
The Intrinsic Structure of Turbulent Jets
,”
J. Sound Vib.
,
22
(
4
), pp.
379
406
.
7.
Nosseir
,
N. S.
,
1979
, “
On the Feedback Phenomenon and Noise Generation of an Impinging Jet
,”
Ph.D. thesis
,
University of Southern California
,
Los Angeles, CA
.
8.
Ho
,
C.-M.
, and
Nosseir
,
N. S.
,
1980
, “
Dynamics of an Impinging Jet. Part 1. The Feedback Phenomenon
,”
J. Fluid Mech.
,
105
(
1
), pp.
119
142
.
9.
Ho
,
C.-M.
, and
Nosseir
,
N. S.
,
1981
, “
Dynamics of an Impinging Jet. Part 2. The Noise Generation
,”
J. Fluid Mech.
,
116
, pp.
379
391
.
10.
Tam
,
C. K. W.
, and
Ahuja
,
K. K.
,
1990
, “
Theoretical Model of Discrete Tone Generation by Impinging Jets
,”
J. Fluid Mech.
,
211
(
1
), pp.
67
87
.
11.
Powell
,
A.
,
1990
, “
Some Aspects of Aeroacoustics: From Rayleigh Until Today
,”
ASME J. Vib. Acoust.
,
112
(
2
), pp.
145
159
.
12.
Glaznev
,
V. N.
,
Demin
,
V. S.
, and
Yakushev
,
A. M.
,
1977
, “
Self-Oscillations in an Underexpanded Jet Flowing Into a Barrier
,”
Fluid Dyn.
,
12
(
6
), pp.
848
852
.
13.
Henderson
,
B.
, and
Powell
,
A.
,
1996
, “
Sound-Production Mechanisms of the Axisymmetric Choked Jet Impinging on Small Plates: The Production of Primary Tones
,”
J. Acoust. Soc. Am.
,
99
(
1
), pp.
153
162
.
14.
Kuo
,
C. Y.
, and
Dowling
,
A. P.
,
1996
, “
Oscillations of a Moderately Underexpanded Choked Jet Impinging Upon a Flat Plate
,”
J. Fluid Mech.
,
315
, pp.
267
291
.
15.
Krothapalli
,
A.
,
Rajkuperan
,
E.
,
Alvi
,
F.
, and
Lourenco
,
L.
,
1999
, “
Flow Field and Noise Characteristics of a Supersonic Impinging Jet
,”
J. Fluid Mech.
,
392
, pp.
155
181
.
16.
Henderson
,
B.
,
2002
, “
The Connection Between Sound Production and Jet Structure of the Supersonic Impinging Jet
,”
J. Acoust. Soc. Am.
,
111
(
2
), pp.
735
746
.
17.
Arthurs
,
D.
, and
Ziada
,
S.
,
2012
, “
Self-Excited Oscillations of a High-Speed Impinging Planar Jet
,”
J. Fluids Struct.
,
34
, pp.
236
258
.
18.
Bogey
,
C.
, and
Gojan
,
R.
,
2017
, “
Feedback Loop and Upwind-Propagating Waves in Ideally-Expanded Supersonic Impinging Round Jets
,”
J. Fluid Mech.
,
823
, pp.
562
591
.
19.
Sheplak
,
M. E.
, and
Spina
,
F.
,
1994
, “
Control of High-Speed Impinging-Jet Resonance
,”
AIAA J.
,
32
(
8
), pp.
1583
1588
.
20.
Sarpotdar
,
S.
,
Raman
,
G.
,
Sharma
,
S. D.
, and
Cain
,
A. B.
,
2007
, “
Jet Impingement Tone Suppression Using Powered Resonance Tubes
,”
AIAA J.
,
45
(
5
), pp.
972
979
.
21.
Alvi
,
F. S.
,
Shih
,
C.
,
Elavarasan
,
R.
,
Garg
,
G.
, and
Krothapalli
,
A.
,
2003
, “
Control of Supersonic Impinging Jet Flows Using Supersonic Microjets
,”
AIAA J.
,
41
(
7
), pp.
1347
1355
.
22.
Wiley
,
A.
, and
Kumar
,
R.
,
2015
, “
Supersonic Impinging Jet Noise Reduction Using a Hybrid Control Technique
,”
J. Sound Vib.
,
348
, pp.
88
104
.
23.
Elavarasan
,
R.
,
Venkatakrishnan
,
L.
, and
Krothapalli
,
A.
,
2000
, “
A PIV Study of a Supersonic Impinging Jet
,”
J. Visualiz.
,
2
(
3–4
), pp.
213
221
.
24.
Dhamanekar
,
A.
, and
Srinivasan
,
K.
,
2018
, “
Mitigation of Impinging Tones Using Central Protrusion
,”
J. Sound Vib.
,
433
, pp.
160
178
.
25.
Balakrishnan
,
P.
, and
Srinivasan
,
K.
,
2019
, “
Impinging Jet Noise Reduction Using Non-Circular Jets
,”
Appl. Acoust.
,
143
, pp.
19
30
.
26.
Elavarasan
,
R.
,
Krothapalli
,
A.
,
Venkatakrishnan
,
L.
, and
Lour
,
L.
,
2001
, “
Suppression of Self-Sustained Oscillations in a Supersonic Impinging Jet
,”
AIAA J.
,
39
(
12
), pp.
2366
2373
.
27.
Balakrishnan
,
P.
, and
Srinivasan
,
K.
,
2016
, “
Reduction of Jet Impingement Noise by Addition of Swirl
,”
ASME J. Vib. Acoust.
,
138
(
6
), p.
061013
.
28.
Weightman
,
J.
,
Amili
,
L.
,
Honnery
,
O.
,
Soria
,
D.
,
Mitchell
,
J.
, and
Edgington
,
D.
,
2017
, “
An Explanation for the Phase Lag in Supersonic Jet Impingement
,”
J. Fluid Mech.
,
815
, pp.
1
10
.
29.
Mason-Smith
,
N.
,
Mitchell Edgington
,
D.
,
Buchmann
,
N. A.
,
Honnery
,
R. D.
, and
Soria
,
J.
,
2015
, “
Shock Structures and Instabilities Formed in an Underexpanded Jet Impinging on to Cylindrical Sections
,”
Shock Waves
,
25
(
6
), pp.
1
12
.
30.
Morata
,
D.
, and
Papamoschou
,
D.
,
2021
, “
Effect of Nozzle Geometry on the Space-Time Emission of Screech Tones
,”
AIAA Aviation 2021 Forum
,
Virtual Online
,
Aug. 2–6
, pp.
2021
2306
.
31.
Shah
,
R. D.
,
Patil
,
H.
, and
Banerjee
,
J.
,
2012
, “
A Relative Assessment of Sub Grid Scale Models for Large Eddy Simulation of Co-Axial Combustor
,”
J. Mech. Sci. Technol.
,
26
(
6
), pp.
1753
1763
.
32.
Powell
,
A.
,
Umeda
,
Y.
, and
Ishii
,
R.
,
1992
, “
Observations of the Oscillation Modes of Chocked Circular Jets
,”
J. Acoust. Soc. Am.
,
92
(
5
), pp.
2823
2836
33.
Ffowcs Williams
,
J. E.
,
Simson
,
J. J.
, and
Virchis
,
V. J.
,
1975
, “
Crackle: An Annoying Component of Jet Noise
,”
J. Fluid Mech.
,
71
(
2
), pp.
251
271
.
You do not currently have access to this content.