Abstract

Light-activated shape memory polymers (LaSMPs) exhibit stiffness variations when exposed to ultraviolet (UV) lights. Thus, LaSMP could manipulate structural frequencies with UV light exposures when laminated on structures. This study aims to experimentally demonstrate the effectiveness of LaSMP frequency control of a flexible beam. The natural frequency of a three-layered Euler–Bernoulli beam composed of LaSMP, adhesive tape, and the flexible beam is analyzed and its frequency formulation exhibits the LaSMP stiffness influence. Since the LaSMP adopted in this study is a new spiropyran-based composition—Sp3/EVA_4, a generic Young’s modulus model is proposed and then simplified to model this new LaSMP composition. To guarantee a homogenous light field, light intensities on the UV surface light source at different positions are tested. The temperature change of the LaSMP sample under UV exposures is also measured. The time constant and the threshold intensity of the reverse reaction are measured. LaSMP Young’s modulus variation is tested with a uniaxial tension experiment. The constitutive model of LaSMP’s Young’s modulus is validated by experimental data. With these preparations, the LaSMP laminated flexible beam model is exposed to UV lights and its natural frequencies are identified with data acquisition and analysis system. Then, natural frequency variations of 25%, 50%, 75%, to 100% exposure areas are also evaluated. The maximum natural frequency variation ratio achieves 9.7%; theoretical predictions and experimental data of LaSMP natural frequency control are compared very well.

References

1.
Tzou
,
H. S.
,
2019
,
Piezoelectric Shells: Sensing, Energy Harvesting, and Distributed Control
, 2nd ed. ed.,
Springer-Nature
,
Dordrecht, The Netherlands.
.
2.
Tzou
,
H. S.
,
Lee
,
H. J.
, and
Arnold
,
S. M.
,
2004
, “
Smart Materials, Precision Sensors/Actuators, Smart Structures, and Structronic Systems
,”
Mech. Adv. Mater. Struc.
,
11
(
4–5
), pp.
367
393
.
3.
Tzou
,
H. S.
, and
Zhang
,
X. F.
,
2016
, “
A Flexoelectric Double-Curvature Nonlinear Shell Energy Harvester
,”
ASME J. Vib. Acoust.
,
138
(
3
), p.
031005
.
4.
Huang
,
S. L.
,
Chu
,
C. C.
,
Chang
,
C. C.
, and
Tzou
,
H. S.
,
2012
, “
Spatial Electrostrictive Actuation Characteristics of Flexible Circular Tubes
,”
ASME J. Pressure Vessel Technol.
,
134
(
2
), p.
021201
.
5.
Wang
,
D.
,
Fan
,
M.
,
Su
,
Z.
, and
Tzou
,
H. S.
,
2019
, “
Frequency Control of Thin Plates With Light-Activated Shape-Memory Polymers
,”
AIAA J.
,
57
(
8
), pp.
3579
3585
.
6.
Hu
,
S. D.
,
Li
,
H.
, and
Tzou
,
H. S.
,
2015
, “
“Precision Microscopic Actuations of Parabolic Cylindrical Shell Reflectors,” ASME Transactions
,”
ASME J. Vib. Acoust.
,
137
(
1
), p.
011013
.
7.
Jiang
,
J.
,
Yue
,
H. H.
,
Deng
,
Z. Q.
, and
Tzou
,
H. S.
,
2013
, “
Cylindrical Shell Control With Center- and Corner-Placed Photostrictive Skew-Quad Actuator Systems,”
,”
ASME J. Vib. Acoust.
,
134
(
2
), p.
024503
.
8.
Wang
,
D.
,
Fan
,
M.
,
Su
,
Z.
, and
Tzou
,
H. S.
,
2020
, “
Vibration Control of Hemispherical Shells With Light-Activated Shape Memory Polymers
,”
AIAA J.
,
58
(
3
), pp.
1369
1376
.
9.
Ginder
,
J. M.
,
Nichols
,
M. E.
,
Elie
,
L. D.
, and
Clark
,
S. M.
,
2000
, “
Controllable-Stiffness Components Based on Magnetorheological Elastomers
,”
Smart Structures and Materials 2000: Smart Structures and Integrated Systems
,
Newport Beach, CA
.
10.
Lau
,
K. T.
,
Zhou
,
L. M.
, and
Tao
,
X. M.
,
2002
, “
Control of Natural Frequencies of a Clamped-Clamped Composite Beam With Embedded Shape Memory Alloy Wires
,”
Compos. Struct.
,
58
(
1
), pp.
39
47
.
11.
Wu
,
Y.
,
Lin
,
Y.
,
Zhou
,
Y.
,
Zuo
,
F.
,
Zheng
,
Z.
, and
Ding
,
X.
,
2012
, “
Light-Induced Shape Memory Polymer Materials
,”
Prog. Chem.
,
24
(
10
), pp.
2004
2010
.
12.
Wang
,
S.
,
Kaneko
,
D.
, and
Kaneko
,
T.
,
2014
, “
Photo-Responsive Shape-Memory and Shape-Changing Polymers
,”
Polym. Bull.
,
6
(
1
), pp.
89
98
.
13.
Habault
,
D.
,
Zhang
,
H. J.
, and
Zhao
,
Y.
,
2013
, “
Light-Triggered Self-Healing and Shape-Memory Polymers
,”
Chem. Soc. Rev.
,
42
(
17
), pp.
7244
7256
.
14.
Lendlein
,
A.
,
Jiang
,
H.
,
Jünger
,
O.
, and
Langer
,
R.
,
2005
, “
Light-Induced Shape-Memory Polymers
,”
Nature
,
434
(
7035
), pp.
879
882
.
15.
Wu
,
L.
,
Jin
,
C.
, and
Sun
,
X.
,
2011
, “
Synthesis, Properties, and Light-Induced Shape Memory Effect of Multiblock Polyesterurethanes Containing Biodegradable Segments and Pendant Cinnamamide Groups
,”
Biomacromolecules
,
12
(
1
), pp.
235
241
.
16.
Zhang
,
X.
,
Zhou
,
Q.
,
Liu
,
H.
, and
Liu
,
H.
,
2014
, “
UV Light Induced Plasticization and Light Activated Shape Memory of Spiropyran Doped Ethylene-Vinyl Acetate Copolymers
,”
Soft Matter
,
10
(
21
), p.
3748
.
17.
Iqbal
,
D.
, and
Samiullah
,
M. H.
,
2013
, “
Photo-responsive Shape-Memory and Shape-Changing Liquid-Crystal Polymer Networks
,”
Materials
,
6
(
1
), pp.
116
142
.
18.
Beblo
,
R. V.
, and
Weiland
,
L. M.
,
2011
, “
Light Activated Shape Memory Polymer Characterization—Part II
,”
ASME J. Appl. Mech.
,
78
(
6
), p.
061016
.
19.
Li
,
H. Y.
,
Li
,
H.
, and
Tzou
,
H. S.
,
2015
, “
Frequency Control of Beams and Cylindrical Shells With Light-Activated Shape Memory Polymers
,”
ASME J. Vib. Acoust.
,
137
(
1
), p.
011006
.
20.
Li
,
H.
,
Guo
,
D.
, and
Tzou
,
H. S.
,
2017
, “
Responses of Rings with Light-Activated Shape Memory Polymers Regulated by Neural Network and Phase Shift
,”
J. Intell. Mater. Syst. Struct.
,
28
(
20
), pp.
3079
3090
.
21.
Sodhi
,
J. S.
, and
Rao
,
I. J.
,
2010
, “
Modeling and Simulation of Light Activated Shape Memory Polymers
,”
Int. J. Eng. Sci.
,
48
(
11
), pp.
1576
1589
.
22.
Ma
,
J.
,
Mu
,
X. M.
,
Bowman
,
C. N.
,
Sun
,
Y. Y.
,
Dunn
,
M. L.
,
Qi
,
H. J.
, and
Fang
,
D. N.
,
2014
, “
A Photoviscoplastic Model for Photoactivated Covalent Adaptive Networks
,”
J. Mech. Phys. Solids
,
70
(
1
), pp.
84
103
.
23.
Sodhi
,
J. S.
,
Cruz
,
P. R.
, and
Rao
,
I. J.
,
2015
, “
Inhomogeneous Deformations of Light Activated Shape Memory Polymers
,”
Int. J. Eng. Sci.
,
89
(
1
), pp.
1
17
.
24.
Akhmanov
,
S. A.
, and
Nikitin
,
S. Y.
,
1997
,
Physical Optics
,
Oxford University Press
,
New York
.
25.
Chen
,
L.
,
Zhao
,
M.
, and
Zhang
,
T.
,
2001
, “
The Testing Method of Mechanical Properties of Thin Films
,”
J. Mech. Strength
,
23
(
4
), pp.
413
429
.
26.
GB/T1040.3-2006/ISO 527-3
,
2006
, “
Plastics—Determination of Tensile Properties—Part, 3. Test Conditions for Films and Sheets
”.
27.
Kim
,
W. G.
,
2008
, “
Photocure Properties of High-Heat-Resistant Photoreactive Polymers With Cinnamate Groups
,”
J. Appl. Polym. Sci.
,
107
(
6
), pp.
3615
3624
.
You do not currently have access to this content.