Abstract

Traditional vibration isolation of satellite instruments has an inherent limitation that low-frequency vibration suppression leads to structural instability. This paper explores a parallel-coupled quasi-zero stiffness (QZS) vibration isolator for an axially loaded beam, with the goal of enhancing the effectiveness of low-frequency isolation. A QZS contains two magnetic rings, which contribute negative stiffness, and one spiral spring, with positive stiffness, a combination that has high static stiffness to resolve the structural instability. The frequency response functions (FRFs) of power flow are used to measure the effectiveness of vibration isolation. The magnetic stiffness of the magnetic rings is calculated using the principle of equivalent magnetic charge. The heights, radii, and gap of the magnetic rings affect its stiffness. The parallel-coupled QZS vibration isolator of an axially loaded beam is modeled using an energy method. Based on the Galerkin truncation, harmonic balance analysis, and arc-length continuation, an approach is proposed to analyze the FRFs of power flow for the parallel-coupled QZS vibration isolation of an axially loaded beam. Numerical results support the analytical results. Both analytical and numerical results show that the power reduction of axially loaded beams with a parallel-coupled quasi-zero vibration isolation system is more significantly suppressed at low frequencies.

References

1.
Zhang
,
Y.
,
Guo
,
Z.
,
He
,
H.
,
Zhang
,
J.
,
Liu
,
M.
, and
Zhou
,
Z.
,
2014
, “
A Novel Vibration Isolation System for Reaction Wheel on Space Telescopes
,”
Acta Astronaut.
,
102
, pp.
1
13
.
2.
Zhang
,
Y.
,
Zang
,
Y.
,
Li
,
M.
,
Wang
,
Y.
, and
Li
,
W.
,
2017
, “
Active-Passive Integrated Vibration Control for Control Moment Gyros and Its Application to Satellites
,”
J. Sound Vib.
,
394
, pp.
1
14
.
3.
Zhang
,
L.
,
Xu
,
S.
,
Zhang
,
Z.
, and
Cui
,
N.
,
2021
, “
Active Vibration Suppression for Flexible Satellites Using a Novel Component Synthesis Method
,”
Adv. Space Res.
,
67
(
6
), pp.
1968
1980
.
4.
Chen
,
S.
,
Xuan
,
M.
,
Xin
,
J.
,
Liu
,
Y.
,
Gu
,
S.
,
Li
,
J.
, and
Zhang
,
L.
,
2020
, “
Design and Experiment of Dual Micro-Vibration Isolation System for Optical Satellite Flywheel
,”
Int. J. Mech. Sci.
,
179
, p.
105592
.
5.
Si
,
Z.
, and
Liu
,
Y.
,
2010
, “
High Accuracy and High Stability Attitude Control of a Satellite With a Rotating Solar Array
,”
J. Astronaut.
,
31
(
12
), pp.
2697
2703
.
6.
Yang
,
K.
,
Harne
,
R. L.
,
Wang
,
K.
, and
Huang
,
H.
,
2014
, “
Investigation of a Bistable Dual-Stage Vibration Isolator Under Harmonic Excitation
,”
Smart Mater. Struct.
,
23
(
4
), p.
045033
.
7.
Kovacic
,
I.
,
2014
, “
On Some Performance Characteristics of Base Excited Vibration Isolation Systems With a Purely Nonlinear Restoring Force
,”
Int. J. Non Linear Mech.
,
65
, pp.
44
52
.
8.
Lu
,
Z.
,
Yang
,
T.
,
Brennan
,
M. J.
,
Liu
,
Z.
, and
Chen
,
L.
,
2017
, “
Experimental Investigation of a Two-Stage Nonlinear Vibration Isolation System With High-Static-Low-Dynamic Stiffness
,”
ASME J. Appl. Mech.
,
84
(
2
), p.
021001
.
9.
Meng
,
K.
,
Sun
,
Y.
,
Pu
,
H.
,
Luo
,
J.
,
Yuan
,
S.
,
Zhao
,
J.
,
Xie
,
S.
, and
Peng
,
Y.
,
2019
, “
Development of Vibration Isolator With Controllable Stiffness Using Permanent Magnets and Coils
,”
ASME J. Vib. Acoust.
,
141
(
4
), p.
041014
.
10.
Pu
,
H.
,
Yuan
,
S.
,
Peng
,
Y.
,
Meng
,
K.
,
Zhao
,
J.
,
Xie
,
R.
,
Huang
,
Y.
, et al
,
2019
, “
Multi-layer Electromagnetic Spring With Tunable Negative Stiffness for Semi-Active Vibration Isolation
,”
Mech. Syst. Signal Process
,
121
(
5
), pp.
942
960
.
11.
Gatti
,
G.
,
Shaw
,
A. D.
,
Gonçalves
,
P. J. P.
, and
Brennan
,
M. J.
,
2021
, “
On the Detailed Design of a Quasi-Zero Stiffness Device to Assist in the Realisation of a Translational Lanchester Damper
,”
Mech. Syst. Signal Process
,
164
(
1
), p.
108258
.
12.
Abolfathi
,
A.
,
Brennan
,
M. J.
,
Waters
,
T. P.
, and
Tang
,
B.
,
2015
, “
On the Effects of Mistuning a Force-Excited System Containing a Quasi-Zero-Stiffness Vibration Isolator
,”
ASME J. Vib. Acoust.
,
137
(
4
), p.
044502
.
13.
Zhou
,
J.
,
Wang
,
X.
,
Xu
,
D.
, and
Bishop
,
S.
,
2015
, “
Nonlinear Dynamic Characteristics of a Quasi-Zero Stiffness Vibration Isolator With Cam-Roller-Spring Mechanisms
,”
J. Sound Vib.
,
346
(
23
), pp.
53
69
.
14.
Li
,
M.
,
Cheng
,
W.
, and
Xie
,
R.
,
2018
, “
Design and Experimental Validation of a Cam-Based Constant-Force Compression Mechanism With Friction Considered
,”
Proc. Inst. Mech. Eng. Part C
,
233
(
11
), pp.
3873
3887
.
15.
Yan
,
B.
,
Wang
,
Z.
,
Ma
,
H.
,
Bao
,
H.
,
Wang
,
K.
, and
Wu
,
C.
,
2021
, “
A Novel Lever-Type Vibration Isolator With Eddy Current Damping
,”
J. Sound Vib.
,
494
(
3
), p.
115862
.
16.
Shaw
,
A. D.
,
Gatti
,
G.
,
Gonçalves
,
P. J. P.
,
Tang
,
B.
, and
Brennan
,
M. J.
,
2021
, “
Design and Test of an Adjustable Quasi-Zero Stiffness Device and Its Use to Suspend Masses on a Multi-Modal Structure
,”
Mech. Syst. Signal Process
,
152
(
1
), p.
107354
.
17.
Ibrahim
,
R. A.
,
2008
, “
Recent Advances in Nonlinear Passive Vibration Isolators
,”
J. Sound Vib.
,
314
(
3
), pp.
371
452
.
18.
Carrella
,
A.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2006
, “
Static Analysis of a Passive Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
J. Sound Vib.
,
301
(
3
), pp.
678
689
.
19.
Carrella
,
A.
,
Brennan
,
M. J.
,
Kovacic
,
I.
, and
Waters
,
T. P.
,
2009
, “
On the Force Transmissibility of a Vibration Isolator With Quasi-Zero-Stiffness
,”
J. Sound Vib.
,
322
(
4
), pp.
707
717
.
20.
Carrella
,
A.
,
Brennan
,
M. J.
,
Waters
,
T. P.
, and
Lopes
,
V.
,
2012
, “
Force and Displacement Transmissibility of a Nonlinear Isolator With High-Static–Low-Dynamic-Stiffness
,”
Int. J. Mech. Sci.
,
55
(
1
), pp.
22
29
.
21.
Jing
,
X.
,
Zhang
,
L.
,
Jiang
,
G.
,
Feng
,
X.
,
Guo
,
Y.
, and
Xu
,
Z.
,
2019
, “
Critical Factors in Designing a Class of X-Shaped Structures for Vibration Isolation
,”
Eng. Struct.
,
199
(
15
), p.
109659
.
22.
Feng
,
X.
, and
Jing
,
X.
,
2019
, “
Human Body Inspired Vibration Isolation: Beneficial Nonlinear Stiffness, Nonlinear Damping & Nonlinear Inertia
,”
Mech. Syst. Signal Process
,
117
(
15
), pp.
786
812
.
23.
Yang
,
J.
,
Xiong
,
Y.
, and
Xing
,
J.
,
2013
, “
Dynamics and Power Flow Behaviour of a Nonlinear Vibration Isolation System With a Negative Stiffness Mechanism
,”
J. Sound Vib.
,
332
(
1
), pp.
167
183
.
24.
Lu
,
Z.
,
Brennan
,
M.
,
Ding
,
H.
, and
Chen
,
L.
,
2019
, “
High-Static-Low-Dynamic-Stiffness Vibration Isolation Enhanced by Damping Nonlinearity
,”
Sci. China: Technol. Sci.
,
62
(
7
), pp.
1103
1110
.
25.
Sun
,
X.
,
Wang
,
F.
, and
Xu
,
J.
,
2018
, “
Dynamics and Realization of a Feedback-Controlled Nonlinear Isolator With Variable Time Delay
,”
ASME J. Vib. Acoust.
,
141
(
2
), p.
021005
.
26.
Liu
,
H.
,
Xiao
,
K.
,
Lv
,
Q.
, and
Ma
,
Y.
,
2021
, “
Analysis and Experimental Study on Dynamic Characteristics of an Integrated Quasi-Zero Stiffness Isolator
,”
ASME J. Vib. Acoust.
,
144
(
2
), p.
021002
.
27.
Deng
,
T.
,
Wen
,
G.
,
Ding
,
H.
,
Lu
,
Z.
, and
Chen
,
L.
,
2020
, “
A Bio-Inspired Isolator Based on Characteristics of Quasi-Zero Stiffness and Bird Multi-Layer Neck
,”
Mech. Syst. Signal Process
,
145
, p.
106967
.
28.
Fulcher
,
B. A.
,
Shahan
,
D. W.
,
Haberman
,
M. R.
,
Conner Seepersad
,
C.
, and
Wilson
,
P. S.
,
2014
, “
Analytical and Experimental Investigation of Buckled Beams as Negative Stiffness Elements for Passive Vibration and Shock Isolation Systems
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031009
.
29.
Ding
,
H.
,
Lu
,
Z.
, and
Chen
,
L.
,
2019
, “
Nonlinear Isolation of Transverse Vibration of Pre-Pressure Beams
,”
J. Sound Vib.
,
442
, pp.
738
751
.
30.
Cui
,
S.
, and
Harne
,
R. L.
,
2018
, “
Characterizing the Nonlinear Response of Elastomeric Material Systems Under Critical Point Constraints
,”
Int. J. Solids Struct.
,
135
, pp.
197
207
.
31.
Ye
,
S.
,
Mao
,
X.
,
Ding
,
H.
,
Ji
,
J.
, and
Chen
,
L.
,
2020
, “
Nonlinear Vibrations of a Slightly Curved Beam With Nonlinear Boundary Conditions
,”
Int. J. Mech. Sci.
,
168
, p.
105294
.
32.
Zhang
,
Y.
,
Zhang
,
Z.
, and
Chen
,
L.
,
2015
, “
Impulse-Induced Vibration Suppression of an Axially Moving Beam With Parallel Nonlinear Energy Sinks
,”
Nonlinear Dyn.
,
82
(
1–2
), pp.
61
71
.
33.
Chen
,
H.
,
Mao
,
X.
,
Ding
,
H.
, and
Chen
,
L.
,
2020
, “
Elimination of Multimode Resonances of Composite Plate by Inertial Nonlinear Energy Sinks
,”
Mech. Syst. Signal Process
,
135
, p.
106383
.
You do not currently have access to this content.