Abstract

A characteristic feature of nonlinear vibrations is the energy transfer among different parts or modes of a mechanical system. Moreover, nonlinear vibrations are often non-periodic, even at steady state. To analyze these phenomena experimentally, the vibration response must be measured at multiple locations in a time-synchronous way. For this task, piezoelectric accelerometers are by far the most popular technology. While the effect of attached sensors on linear vibration properties is well-known (mass loading in particular), the purpose of the present work is to assess their intrusiveness on nonlinear vibrations. To this end, we consider a compressor blade that undergoes impacts near the tip for sufficiently large vibrations. We consider two configurations, one in which five triaxial piezoelectric accelerometers are glued to the blade surface and one without sensors attached. In both configurations, the vibration response is measured using a multi-point laser Doppler vibrometer. In the linear case without impacts, the lowest-frequency bending mode merely sees the expected slight frequency shift due to mass loading. In the nonlinear vibro-impact case, unexpectedly, the near-resonant response to harmonic base excitation changes severely both quantitatively and qualitatively. In particular, pronounced strongly modulated responses and period doubling are observed only in the case without attached sensors. We conjecture that this is due to a considerable increase of damping, caused by the sensor cables, affecting mainly the higher-frequency modes.

References

1.
Døssing
,
O.
,
1988
,
Structural Testing: Mechanical Mobility Measurements
,
Brüel & Kjær
,
Nærum
.
2.
Rothberg
,
S. J.
,
Allen
,
M. S.
,
Castellini
,
P.
,
Di Maio
,
D.
,
Dirckx
,
J. J.
,
Ewins
,
D. J.
,
Halkon
,
B. J.
,
Muyshondt
,
P.
,
Paone
,
N.
, and
Ryan
,
T.
,
2017
, “
An International Review of Laser Doppler Vibrometry: Making Light Work of Vibration Measurement
,”
Opt. Lasers Eng.
,
99
(
10
), pp.
11
22
.
3.
Ehrhardt
,
D. A.
,
Allen
,
M. S.
,
Yang
,
S.
, and
Beberniss
,
T. J.
,
2017
, “
Full-Field Linear and Nonlinear Measurements Using Continuous-Scan Laser Doppler Vibrometry and High Speed Three-Dimensional Digital Image Correlation
,”
Mech. Syst. Signal. Process.
,
86
, pp.
82
97
.
4.
Trainotti
,
F.
,
Berninger
,
T. F. C.
, and
Rixen
,
D. J.
,
2020
, “
Using Laser Vibrometry for Precise FRF Measurements in Experimental Substructuring
.”
Dynamic Substructures
, Volume
4
,
A.
Linderholt
,
M. S.
Allen
,
R. L.
Mayes
, and
D.
Rixen
, eds.,
Springer International Publishing
, pp.
1
11
.
5.
Molina-Viedma
,
A. J.
,
Felipe-Sesé
,
L.
,
López-Alba
,
E.
, and
Díaz
,
F.
,
2018
, “
High Frequency Mode Shapes Characterisation Using Digital Image Correlation and Phase-Based Motion Magnification
,”
Mech. Syst. Signal. Process.
,
102
, pp.
245
261
.
6.
Beberniss
,
T. J.
, and
Ehrhardt
,
D. A.
,
2017
, “
High-Speed 3d Digital Image Correlation Vibration Measurement: Recent Advancements and Noted Limitations
,”
Mech. Syst. Signal. Process.
,
86
(
3
), pp.
35
48
.
7.
Warren
,
C.
,
Niezrecki
,
C.
,
Avitabile
,
P.
, and
Pingle
,
P.
,
2011
, “
Comparison of Frf Measurements and Mode Shapes Determined Using Optically Image Based, Laser, and Accelerometer Measurements
,”
Mech. Syst. Signal. Process.
,
25
(
6
), pp.
2191
2202
.
8.
Helfrick
,
M. N.
,
Niezrecki
,
C.
,
Avitabile
,
P.
, and
Schmidt
,
T.
,
2011
, “
3D Digital Image Correlation Methods for Full-Field Vibration Measurement
,”
Mech. Syst. Signal. Process.
,
25
(
3
), pp.
917
927
.
9.
Pesaresi
,
L.
,
Stender
,
M.
,
Ruffini
,
V.
, and
Schwingshackl
,
C. W.
,
2017
, “Dic Measurement of the Kinematics of a Friction Damper for Turbine Applications,”
Dynamics of Coupled Structures
, Vol.
4
,
Springer
,
Berlin
, pp.
93
101
.
10.
Reu
,
P. L.
,
Rohe
,
D. P.
, and
Jacobs
,
L. D.
,
2017
, “
Comparison of DIC and LDV for Practical Vibration and Modal Measurements
,”
Mech. Syst. Signal. Process.
,
86
(
3
), pp.
2
16
.
11.
Thomas
,
O.
,
Sénéchal
,
A.
, and
Deü
,
J.-F.
,
2016
, “
Hardening/Softening Behavior and Reduced Order Modeling of Nonlinear Vibrations of Rotating Cantilever Beams
,”
Nonlinear Dyn.
,
86
(
2
), pp.
1293
1318
.
12.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Kerschen
,
G.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
, and
Lee
,
Y. S.
,
2008
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
,
Springer
,
Berlin
.
13.
Starosvetsky
,
Y.
,
Jayaprakash
,
K. R.
,
Hasan
,
M. A.
, and
Vakakis
,
A. F.
,
2017
,
Topics on the Nonlinear Dynamics and Acoustics of Ordered Granular Media
,
World Scientific
,
Singapore
.
14.
Leine
,
R. I.
, and
Nijmeijer
,
H.
,
2004
,
Dynamics and Bifurcations of Non-Smooth Mechanical Systems
,
Springer
,
Berlin
.
15.
Stepan
,
G.
,
2001
, “
Modelling Non-Linear Regenerative Effects in Metal Cutting
,”
Phil. Trans. R. Soc.
,
359
(
1781
), pp.
739
757
.
16.
Szalai
,
R.
,
Mann
,
B.
,
Bayly
,
P. V.
,
Insperger
,
T.
,
Gradisek
,
J.
, and
Govekar
,
E.
,
2005
, “
Nonlinear Dynamics of High-Speed Milling-Analyses, Numerics, and Experiments
,”
J. Vib. Acoust.
, 127.
17.
Karagiannis
,
K.
, and
Pfeiffer
,
F.
,
1991
, “
Theoretical and Experimental Investigations of Gear-Rattling
,”
Nonlinear Dyn.
,
2
(
5
), pp.
367
387
.
18.
Remy
,
C. D.
,
2017
, “
Ambiguous Collision Outcomes and Sliding With Infinite Friction in Models of Legged Systems
,”
Int. J. Rob. Res.
,
36
(
12
), pp.
1252
1267
.
19.
Mokhtar
,
M. A.
,
Darpe
,
A. K.
, and
Gupta
,
K.
,
2017
, “Investigation of Rotor Stator Rub Phenomenon Considering Pure Sticking Condition,”
X International Conference on Structural Dynamics
, Vol.
173
,
Elsevier
,
Rome, Amsterdam
, pp.
1531
1537
.
20.
Gaul
,
L.
, and
Lenz
,
J.
,
1997
, “
Nonlinear Dynamics of Structures Assembled by Bolted Joints
,”
Acta Mechanica
,
125
(
1-4
), pp.
169
181
.
21.
Worden
,
K
, and
Tomlinson
,
G. R.
,
2002
, “
Nonlinearity in Structural Dynamics: Detection, Identification and Modeling
,”
Appl. Mech. Rev.
,
55
(
2
), pp.
B26
B27
.
22.
Kerschen
,
G.
,
Worden
,
K.
,
Vakakis
,
A. F.
, and
Golinval
,
J.-c.
,
2006
, “
Past, Present and Future of Nonlinear System Identification in Structural Dynamics
,”
Mech. Syst. Signal. Process.
,
20
(
3
), pp.
505
592
.
23.
Noël
,
J. P.
, and
Kerschen
,
G.
,
2017
, “
Nonlinear System Identification in Structural Dynamics: 10 More Years of Progress
,”
Mech. Syst. Signal. Process.
,
83
(
4
), pp.
2
35
.
24.
Brake
,
M. R.
, ed.,
2018
,
The Mechanics of Jointed Structures: Recent Research and Open Challenges for Developing Predictive Models for Structural Dynamics
,
Springer International Publishing
,
Cham
.
25.
Smith
,
S. A.
,
Brake
,
M. R. W.
, and
Schwingshackl
,
C. W.
,
2020
, “
On the Characterization of Nonlinearities in Assembled Structures
,”
ASME J. Vib. Acoust.
,
142
(
5
), p.
051105
.
26.
Catalfamo
,
S.
,
Smith
,
S. A.
,
Morlock
,
F.
,
Brake
,
M. R. W.
,
Reuß
,
P.
,
Schwingshackl
,
C. W.
, and
Zhu
,
W. D.
,
2016
, “
Effects of Experimental Methods on the Measurements of a Nonlinear Structure
.”
Dynamics of Coupled Structures
, Vol.
4
,
M.
Allen
,
R. L.
Mayes
, and
D.
Rixen
, eds.,
Springer International Publishing
, pp.
491
500
.
27.
Lacarbonara
,
W.
,
Carboni
,
B.
, and
Quaranta
,
G.
,
2016
,
Nonlinear Normal Modes for Damage Detection
.
28.
Ewins
,
D. J.
,
1995
,
Modal Testing: Theory and Practice
,
Research Studies Press Ltd.
,
Taunton
.
29.
Civera
,
M.
,
Zanotti Fragonara
,
L.
, and
Surace
,
C.
,
2019
, “
Using Video Processing for the Full-Field Identification of Backbone Curves in Case of Large Vibrations
,”
Sensors
,
19
(
10
), p.
2345
.
30.
Civera
,
M.
,
Fragonara
,
L. Z.
, and
Surace
,
C.
,
2019
, “
Video Processing Techniques for the Contactless Investigation of Large Oscillations
,”
J. Phys.: Conference Ser.
,
1249
(
1
), p.
012004
.
31.
Dank
,
J.
,
2018
,
Zero Mass Loading: Effect and Compensation in Vibration Analysis: Application Note
.
32.
Bi
,
S.
,
Ren
,
J.
,
Wang
,
W.
, and
Zong
,
G.
,
2013
, “
Elimination of Transducer Mass Loading Effects in Shaker Modal Testing
,”
Mech. Syst. Signal. Process.
,
38
(
2
), pp.
265
275
.
33.
Decker
,
J.
, and
Witfeld
,
H.
,
1995
, “Correction of Transducer-Loading Effects in Experimental Modal Analysis,”
Proceedings of the 13th International Modal Analysis Conference
,
SEM
,
Nashville, TN, Bethel, CT
.
34.
SILVA
,
J.
,
MAIA
,
N.
, and
RIBEIRO
,
A.
,
2000
, “
Cancellation of Mass-loading Effects of Transducers and Evaluation of Unmeasured Frequency Response Functions
,”
J. Sound. Vib.
,
236
(
5
), pp.
761
779
.
35.
Cakar
,
O.
, and
Sanliturk
,
K. Y.
,
2005
, “
Elimination of Transducer Mass Loading Effects From Frequency Response Functions
,”
Mech. Syst. Signal. Process.
,
19
(
1
), pp.
87
104
.
36.
Yang
,
Y.
,
Dorn
,
C.
,
Mancini
,
T.
,
Talken
,
Z.
,
Nagarajaiah
,
S.
,
Kenyon
,
G.
,
Farrar
,
C.
, and
Mascareñas
,
D.
,
2017
, “
Blind Identification of Full-Field Vibration Modes of Output-only Structures From Uniformly-Sampled, Possibly Temporally-Aliased (sub-nyquist), Video Measurements
,”
J. Sound. Vib.
,
390
, pp.
232
256
.
37.
Yang
,
Y.
,
Dorn
,
C.
,
Mancini
,
T.
,
Talken
,
Z.
,
Kenyon
,
G.
,
Farrar
,
C.
, and
Mascareñas
,
D.
,
2017
, “
Blind Identification of Full-Field Vibration Modes From Video Measurements With Phase-Based Video Motion Magnification
,”
Mech. Syst. Signal. Process.
,
85
(
2
), pp.
567
590
.
38.
Zanarini
,
A.
,
2019
, “
Full Field Optical Measurements in Experimental Modal Analysis and Model Updating
,”
J. Sound. Vib.
,
442
(
B
), pp.
817
842
.
39.
Tomlinson
,
G. R.
,
1979
, “
Force Distortion in Resonance Testing of Structures With Electro-Dynamic Vibration Exciters
,”
Vibro-Impact Syst.
,
63
(
3
), pp.
337
350
.
40.
McConnell
,
K. G.
, and
Varoto
,
P. S.
,
1995
,
Vibration Testing: Theory and Practice
,
John Wiley & Sons
.
You do not currently have access to this content.