Abstract
This work mainly concentrates on the optimization of cubic and bistable nonlinear energy sink (NES) to find the maximum efficiency point under harmonic excitation. The conservative system is considered to reveal the inner property of the damping system. With the application of the multiple scales method and the complex variables method, the threshold of excitation and different response regimes are distinguished under the assumption of 1:1 resonance. The maximum efficiency point of cubic and bistable NES occurs when strongly modulated response disappears. The factors that affect the optimal efficiency limit are explored. The result indicates that the maximum absorption efficiency level is mainly determined by the damping parameters. Compared with the cubic case, the bistable case involves more complex regimes in terms of chaos oscillation. The influence of damping parameters on the chaos threshold is discussed to adopt different energy levels. With the help of analytical predictions, the proper nonlinear stiffness is determined for certain harmonic excitation. This study offers some fundamental insights into the optimal design of cubic and bistable NES.