Abstract

This work mainly concentrates on the optimization of cubic and bistable nonlinear energy sink (NES) to find the maximum efficiency point under harmonic excitation. The conservative system is considered to reveal the inner property of the damping system. With the application of the multiple scales method and the complex variables method, the threshold of excitation and different response regimes are distinguished under the assumption of 1:1 resonance. The maximum efficiency point of cubic and bistable NES occurs when strongly modulated response disappears. The factors that affect the optimal efficiency limit are explored. The result indicates that the maximum absorption efficiency level is mainly determined by the damping parameters. Compared with the cubic case, the bistable case involves more complex regimes in terms of chaos oscillation. The influence of damping parameters on the chaos threshold is discussed to adopt different energy levels. With the help of analytical predictions, the proper nonlinear stiffness is determined for certain harmonic excitation. This study offers some fundamental insights into the optimal design of cubic and bistable NES.

References

1.
Franchek
,
M.
,
Ryan
,
M.
, and
Bernhard
,
R.
,
1996
, “
Adaptive Passive Vibration Control
,”
J. Sound. Vib.
,
189
(
5
), pp.
565
585
.
2.
Vakakis
,
A. F.
, and
Gendelman
,
O.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators: Part II—Resonance Capture
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
42
48
.
3.
Kerschen
,
G.
,
Lee
,
Y. S.
,
Vakakis
,
A. F.
,
McFarland
,
D. M.
, and
Bergman
,
L. A.
,
2005
, “
Irreversible Passive Energy Transfer in Coupled Oscillators With Essential Nonlinearity
,”
SIAM J. Appl. Math.
,
66
(
2
), pp.
648
679
.
4.
Gendelman
,
O.
,
Manevitch
,
L.
,
Vakakis
,
A. F.
, and
M’closkey
,
R.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators: Part I—Dynamics of the Underlying Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
34
41
.
5.
Lee
,
Y.
,
Vakakis
,
A. F.
,
Bergman
,
L.
,
McFarland
,
D.
,
Kerschen
,
G.
,
Nucera
,
F.
,
Tsakirtzis
,
S.
, and
Panagopoulos
,
P.
,
2008
, “
Passive Non-Linear Targeted Energy Transfer and Its Applications to Vibration Absorption: A Review
,”
Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn.
,
222
(
2
), pp.
77
134
.
6.
Starosvetsky
,
Y.
, and
Gendelman
,
O.
,
2008
, “
Attractors of Harmonically Forced Linear Oscillator With Attached Nonlinear Energy Sink. II: Optimization of a Nonlinear Vibration Absorber
,”
Nonlinear Dyn.
,
51
(
1–2
), pp.
47
57
.
7.
Gourdon
,
E.
,
Alexander
,
N. A.
,
Taylor
,
C. A.
,
Lamarque
,
C.-H.
, and
Pernot
,
S.
,
2007
, “
Nonlinear Energy Pumping Under Transient Forcing With Strongly Nonlinear Coupling: Theoretical and Experimental Results
,”
J. Sound. Vib.
,
300
(
3–5
), pp.
522
551
.
8.
Gourc
,
E.
,
Michon
,
G.
,
Seguy
,
S.
, and
Berlioz
,
A.
,
2014
, “
Experimental Investigation and Design Optimization of Targeted Energy Transfer Under Periodic Forcing
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
021021
.
9.
Starosvetsky
,
Y.
, and
Gendelman
,
O.
,
2008
, “
Response Regimes of Linear Oscillator Coupled to Nonlinear Energy Sink With Harmonic Forcing and Frequency Detuning
,”
J. Sound. Vib.
,
315
(
3
), pp.
746
765
.
10.
Romeo
,
F.
,
Sigalov
,
G.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2015
, “
Dynamics of a Linear Oscillator Coupled to a Bistable Light Attachment: Numerical Study
,”
ASME J. Comput. Nonlinear. Dyn.
,
10
(
1
), p.
011007
.
11.
Farshidianfar
,
A.
, and
Saghafi
,
A.
,
2014
, “
Global Bifurcation and Chaos Analysis in Nonlinear Vibration of Spur Gear Systems
,”
Nonlinear Dyn.
,
75
(
4
), pp.
783
806
.
12.
Guckenheimer
,
J.
, and
Holmes
,
P.
,
2013
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
, Vol.
42
,
Springer Science & Business Media
,
Berlin
.
13.
Qiu
,
D.
,
Seguy
,
S.
, and
Paredes
,
M.
,
2018
, “
Tuned Nonlinear Energy Sink With Conical Spring: Design Theory and Sensitivity Analysis
,”
ASME J. Mech. Des.
,
140
(
1
), p.
011404
.
14.
Silva
,
C. E.
,
Maghareh
,
A.
,
Tao
,
H.
,
Dyke
,
S. J.
, and
Gibert
,
J.
,
2019
, “
Evaluation of Energy and Power Flow in a Nonlinear Energy Sink Attached to a Linear Primary Oscillator
,”
ASME J. Vib. Acoust.
,
141
(
6
), p.
061012
.
15.
Wei
,
Y.
,
Peng
,
Z.
,
Dong
,
X.
,
Zhang
,
W.
, and
Meng
,
G.
,
2017
, “
Mechanism of Optimal Targeted Energy Transfer
,”
ASME J. Appl. Mech.
,
84
(
1
), p.
011007
.
16.
AL-Shudeifat
,
M. A.
,
2014
, “
Highly Efficient Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
76
(
4
), pp.
1905
1920
.
17.
Habib
,
G.
, and
Romeo
,
F.
,
2017
, “
The Tuned Bistable Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
89
(
1
), pp.
179
196
.
18.
Lee
,
Y. S.
,
Kerschen
,
G.
,
Vakakis
,
A. F.
,
Panagopoulos
,
P.
,
Bergman
,
L.
, and
McFarland
,
D. M.
,
2005
, “
Complicated Dynamics of a Linear Oscillator With a Light, Essentially Nonlinear Attachment
,”
Phys. D: Nonlinear Phenome.
,
204
(
1–2
), pp.
41
69
.
19.
Manevitch
,
L.
,
Sigalov
,
G.
,
Romeo
,
F.
,
Bergman
,
L.
, and
Vakakis
,
A.
,
2014
, “
Dynamics of a Linear Oscillator Coupled to a Bistable Light Attachment: Analytical Study
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041011
.
20.
Romeo
,
F.
,
Manevitch
,
L.
,
Bergman
,
L.
, and
Vakakis
,
A.
,
2015
, “
Transient and Chaotic Low-Energy Transfers in a System With Bistable Nonlinearity
,”
Chaos
,
25
(
5
), p.
053109
.
21.
Starosvetsky
,
Y.
, and
Gendelman
,
O.
,
2010
, “
Interaction of Nonlinear Energy Sink With a Two Degrees of Freedom Linear System: Internal Resonance
,”
J. Sound. Vib.
,
329
(
10
), pp.
1836
1852
.
22.
Gendelman
,
O.
,
Starosvetsky
,
Y.
, and
Feldman
,
M.
,
2008
, “
Attractors of Harmonically Forced Linear Oscillator With Attached Nonlinear Energy Sink I: Description of Response Regimes
,”
Nonlinear Dyn.
,
51
(
1–2
), pp.
31
46
.
23.
Starosvetsky
,
Y.
, and
Gendelman
,
O.
,
2010
, “
Bifurcations of Attractors in Forced System With Nonlinear Energy Sink: The Effect of Mass Asymmetry
,”
Nonlinear Dyn.
,
59
(
4
), pp.
711
731
.
24.
Qiu
,
D.
,
Li
,
T.
,
Seguy
,
S.
, and
Paredes
,
M.
,
2018
, “
Efficient Targeted Energy Transfer of Bistable Nonlinear Energy Sink: Application to Optimal Design
,”
Nonlinear Dyn.
,
92
(
2
), pp.
443
461
.
25.
Braydi
,
O.
,
Gogu
,
C.
, and
Paredes
,
M.
,
2020
, “
Robustness and Reliability Investigations on a Nonlinear Energy Sink Device Concept
,”
Mech. Ind.
,
21
(
6
), p.
603
.
26.
Dekemele
,
K.
,
Van Torre
,
P.
, and
Loccufier
,
M.
,
2019
, “
Performance and Tuning of a Chaotic Bi-stable Nes to Mitigate Transient Vibrations
,”
Nonlinear Dyn.
,
98
(
3
), pp.
1831
1851
.
You do not currently have access to this content.