Abstract

Models for rotating rigid discs excited by contact elements have been developed for the study of break noise and vibration. More recently, models for clutch squeal/eek noise have been developed as well. Such phenomenological representations, even though simple, are of great help for designers given that many physical features can be included, such as the circulatory and gyroscopic effects. Instability or self-excited vibrations are represented by wobbling motions. In this study, a device is included as a disc connected to the primary system by a set of spring and damping elements. A complex coordinate notation was helpful to make a concise physical description of the in-phase and out-of-phase wobbling motions between the bodies. If its properties are properly adjusted, all modes interact (indicating veering or crossings between the eigenvalue loci), and the system is stabilized.

References

1.
Ibrahim
,
R.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal, and Chaos—Part I: Mechanics of Contact and Friction
,”
ASME Appl. Mech. Rev.
,
47
(
7
), pp.
209
226
. 10.1115/1.3111079
2.
Ibrahim
,
R.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal, and Chaos—Part II: Dynamics and Modeling
,”
ASME Appl. Mech. Rev.
,
47
(
7
), pp.
227
253
. 10.1115/1.3111080
3.
Crolla
,
D.
, and
Lang
,
A.
,
1991
, “
Paper Vii (i) Brake Noise and Vibration—The State of the Art
,”
Tribology Series
,
18
, pp.
165
174
. https://doi.org/10.1016/S0167-8922(08)70132-9
4.
Papinniemi
,
A.
,
Lai
,
J.
,
Zhao
,
J.
, and
Loader
,
L.
,
2002
, “
Brake Squeal: A Literature Review
,”
Appl. Acoust.
,
63
(
4
), pp.
391
400
. 10.1016/S0003-682X(01)00043-3
5.
Kinkaid
,
N.
,
O’Reilly
,
O.
, and
Papadopoulos
,
P.
,
2003
, “
Automotive Disc Brake Squeal
,”
J. Sound. Vib.
,
267
(
1
), pp.
105
166
. 10.1016/S0022-460X(02)01573-0
6.
Ouyang
,
H.
,
Nack
,
W.
,
Yuan
,
Y.
, and
Chen
,
F.
,
2005
, “
Numerical Analysis of Automotive Disc Brake Squeal: A Review
,”
Int. J. Vehicle Noise Vib.
,
1
(
3
), pp.
207
231
. 10.1504/IJVNV.2005.007524
7.
von Wagner
,
U.
,
Hochlenert
,
D.
, and
Hagedorn
,
P.
,
2007
, “
Minimal Models for Disk Brake Squeal
,”
J. Sound. Vib.
,
302
(
3
), pp.
527
539
. 10.1016/j.jsv.2006.11.023
8.
Cantoni
,
C.
,
Cesarini
,
R.
,
Mastinu
,
G.
,
Rocca
,
G.
, and
Sicigliano
,
R.
,
2009
, “
Brake Comfort—A Review
,”
Vehicle Syst. Dyn.
,
47
(
8
), pp.
901
947
. 10.1080/00423110903100432
9.
Thompson
,
D.
, and
Jones
,
C.
,
2000
, “
A Review of the Modelling of Wheel/Rail Noise Generation
,”
J. Sound. Vib.
,
231
(
3
), pp.
519
536
. 10.1006/jsvi.1999.2542
10.
Feeny
,
B.
,
Guran
,
A.
,
Hinrichs
,
N.
, and
Popp
,
K.
,
1998
, “
A Historical Review on Dry Friction and Stick-Slip Phenomena
,”
ASME Appl. Mech. Rev.
,
51
(
5
), pp.
321
341
. 10.1115/1.3099008
11.
Popp
,
K.
, and
Stelter
,
P.
,
1990
, “
Stick-Slip Vibrations and Chaos
,”
Philosophical Trans. R. Soc. London A: Math., Phys. Eng. Sci.
,
332
(
1624
), pp.
89
105
.
12.
Popp
,
K.
,
Hinrichs
,
N.
, and
Oestreich
,
M.
,
1995
, “
Dynamical Behaviour of a Friction Oscillator With Simultaneous Self and External Excitation
,”
Sadhana
,
20
(
2-4
), pp.
627
654
. 10.1007/BF02823210
13.
Shin
,
K.
,
Brennan
,
M.
,
Oh
,
J.-E.
, and
Harris
,
C.
,
2002
, “
Analysis of Disc Brake Noise Using a Two-Degree-of-Freedom Model
,”
J. Sound. Vib.
,
254
(
5
), pp.
837
848
. 10.1006/jsvi.2001.4127
14.
Popp
,
K.
, and
Rudolph
,
M.
,
2004
, “
Vibration Control to Avoid Stick-Slip Motion
,”
J. Vib. Control
,
10
(
11
), pp.
1585
1600
. 10.1177/1077546304042026
15.
Spurr
,
R. T.
,
1961
, “
A Theory of Brake Squeal
,”
Proc. Inst. Mech. Eng.: Auto. Division
,
15
(
1
), pp.
33
52
.
16.
Sinou
,
J.-J.
,
Thouverez
,
F.
, and
Jezequel
,
L.
,
2003
, “
Analysis of Friction and Instability by the Centre Manifold Theory for a Non-Linear Sprag-Slip Model
,”
J. Sound. Vib.
,
265
(
3
), pp.
527
559
. 10.1016/S0022-460X(02)01453-0
17.
Hoffmann
,
N.
, and
Gaul
,
L.
,
2004
, “
A Sufficient Criterion for the Onset of Sprag-Slip Oscillations
,”
Arch. Appl. Mech.
,
73
(
9–10
), pp.
650
660
. 10.1007/s00419-003-0315-4
18.
Kang
,
J.
, and
Krousgrill
,
C. M.
,
2010
, “
The Onset of Friction-Induced Vibration and Spragging
,”
J. Sound. Vib.
,
329
(
17
), pp.
3537
3549
. 10.1016/j.jsv.2010.03.002
19.
Hoffmann
,
N.
,
Fischer
,
M.
,
Allgaier
,
R.
, and
Gaul
,
L.
,
2002
, “
A Minimal Model for Studying Properties of the Mode-Coupling Type Instability in Friction Induced Oscillations
,”
Mech. Res. Communi.
,
29
(
4
), pp.
197
205
. 10.1016/S0093-6413(02)00254-9
20.
Hoffmann
,
N.
, and
Gaul
,
L.
,
2003
, “
Effects of Damping on Mode-Coupling Instability in Friction Induced Oscillations
,”
ZAMM-J. Appl. Math. Mech./Z. Angewandte Math. Mech.
,
83
(
8
), pp.
524
534
. 10.1002/zamm.200310022
21.
Sinou
,
J.-J.
, and
Jezequel
,
L.
,
2007
, “
Mode Coupling Instability in Friction-Induced Vibrations and Its Dependency on System Parameters Including Damping
,”
Eur. J. Mech. A/Solids
,
26
(
1
), pp.
106
122
. 10.1016/j.euromechsol.2006.03.002
22.
Hochlenert
,
D.
, and
Hagedorn
,
P.
,
2006
, “
Control of Disc Brake Squeal-Modelling and Experiments
,”
Struct. Control Health Monitoring
,
13
(
1
), pp.
260
276
. 10.1002/stc.138
23.
Hochlenert
,
D.
,
Spelsberg-Korspeter
,
G.
, and
Hagedorn
,
P.
,
2010
, “
A Note on Safety-Relevant Vibrations Induced by Brake Squeal
,”
J. Sound. Vib.
,
329
(
19
), pp.
3867
3872
. 10.1016/j.jsv.2010.04.033
24.
Hagedorn
,
P.
,
Eckstein
,
M.
,
Heffel
,
E.
, and
Wagner
,
A.
,
2014
, “
Self-Excited Vibrations and Damping in Circulatory Systems
,”
ASME J. Appl. Mech.
,
81
(
10
), p.
101009
. 10.1115/1.4028240
25.
Stender
,
M.
,
Tiedemann
,
M.
,
Hoffmann
,
N.
, and
Oberst
,
S.
,
2018
, “
Impact of an Irregular Friction Formulation on Dynamics of a Minimal Model for Brake Squeal
,”
Mech. Syst. Signal. Process.
,
107
, pp.
439
451
. 10.1016/j.ymssp.2018.01.032
26.
Wickramarachi
,
P.
,
Singh
,
R.
, and
Bailey
,
G.
,
2005
, “
Analysis of Friction-Induced Vibration Leading to “eek” Noise in a Dry Friction Clutch
,”
Noise Control Eng. J.
,
53
(
4
), pp.
138
144
. 10.3397/1.2839252
27.
Fidlin
,
A.
,
2006
,
Nonlinear Oscillations in Mechanical Engineering
,
Springer
,
New York
.
28.
Hervé
,
B.
,
Sinou
,
J.-J.
,
Mahé
,
H.
, and
Jezequel
,
L.
,
2008
, “
Analysis of Squeal Noise and Mode Coupling Instabilities Including Damping and Gyroscopic Effects
,”
Eur. J. Mech. A/Solids
,
27
(
2
), pp.
141
160
. 10.1016/j.euromechsol.2007.05.004
29.
Hervé
,
B.
,
Sinou
,
J.-J.
,
Mahé
,
H.
, and
Jezequel
,
L.
,
2009
, “
Extension of the Destabilization Paradox to Limit Cycle Amplitudes for a Nonlinear Self-Excited System Subject to Gyroscopic and Circulatory Actions
,”
J. Sound. Vib.
,
323
(
3
), pp.
944
973
. 10.1016/j.jsv.2009.01.023
30.
Fidlin
,
A.
,
Drozdetskaya
,
O.
, and
Waltersberger
,
B.
,
2011
, “
On the Minimal Model for the Low Frequency Wobbling Instability of Friction Discs
,”
Eur. J. Mech. A/Solids
,
30
(
5
), pp.
665
672
. 10.1016/j.euromechsol.2011.03.009
31.
Senatore
,
A.
,
Hochlenert
,
D.
,
D’Agostino
,
V.
, and
von Wagner
,
U.
,
2013
, “
Driveline Dynamics Simulation and Analysis of the Dry Clutch Friction-Induced Vibrations in the Eek Frequency Range
,”
Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition. Volume 13: Transportation Systems
,
San Diego, CA
,
Nov. 15–21
,
American Society of Mechanical Engineers
, p.
V013T14A024
.
32.
Senatore
,
A.
,
2014
, “
Vibrations Induced by Electro-Actuated Dry Clutch in the Eek Frequency: Excitation in Gear-Shifting Operations
,”
J. Mech.
,
2
(
4
), pp.
301
311
.
33.
Mercier
,
A.
,
Jezequel
,
L.
,
Besset
,
S.
,
Hamdi
,
A.
, and
Diebold
,
J.-F.
,
2019
, “
Nonlinear Analysis of the Friction-Induced Vibrations of a Rotor-Stator System
,”
J. Sound. Vib.
,
443
, pp.
483
501
. 10.1016/j.jsv.2018.12.005
34.
Sun
,
J. Q.
,
Jolly
,
M.
, and
Norris
,
M.
,
1995
, “
Passive, Adaptive and Active Tuned Vibration Absorbers—A Survey
,”
ASME J. Mech. Des.
,
117
(
B
), pp.
234
242
. 10.1115/1.2836462
35.
Ding
,
H.
, and
Chen
,
L.-Q.
,
2020
, “
Designs, Analysis, and Applications of Nonlinear Energy Sinks
,”
Nonlinear Dyn.
,
100
(
4
), pp.
3061
3107
. 10.1007/s11071-020-05724-1
36.
Lu
,
Z.
,
Wang
,
Z.
,
Zhou
,
Y.
, and
Lu
,
X.
,
2018
, “
Nonlinear Dissipative Devices in Structural Vibration Control: A Review
,”
J. Sound. Vib.
,
423
, pp.
18
49
. 10.1016/j.jsv.2018.02.052
37.
Habib
,
G.
,
Detroux
,
T.
,
Viguié
,
R.
, and
Kerschen
,
G.
,
2015
, “
Nonlinear Generalization of Den Hartog’s Equal-Peak Method
,”
Mech. Syst. Signal. Process.
,
52
, pp.
17
28
. 10.1016/j.ymssp.2014.08.009
38.
Detroux
,
T.
,
Habib
,
G.
,
Masset
,
L.
, and
Kerschen
,
G.
,
2015
, “
Performance, Robustness and Sensitivity Analysis of the Nonlinear Tuned Vibration Absorber
,”
Mech. Syst. Signal. Process.
,
60
, pp.
799
809
. 10.1016/j.ymssp.2015.01.035
39.
Sueoka
,
A.
,
Ryu
,
T.
,
Fujiyama
,
M.
, and
Yoshitake
,
Y.
,
1995
, “
Quenching of Frictional Vibration of a Rotating Circular Plate by Dynamic Absorbers
,”
JSME Int. J. Ser. C, Dyn., Control, Rob., Design Manufact.
,
38
(
3
), pp.
441
449
.
40.
Giannini
,
O.
, and
Sestieri
,
A.
,
2012
, “
Pseudo Dampers for Squeal Mitigation
,”
International Conference on Noise and Vibration Engineering 2012, ISMA 2012, Including USD 2012: International Conference on Uncertainty in Structure Dynamics
,
Leuven, Belgium
,
Sept. 17–19
,
Katholieke Universiteit Leuven
, pp.
2355
2365
.
41.
Giannini
,
O.
,
2009
, “
Squeal Suppression Through a Tuned Fuzzy Damper: A Numerical Study
,”
Int. J. Vehicle Design
,
51
(
1–2
), pp.
105
123
. 10.1504/IJVD.2009.027117
42.
Giannini
,
O.
,
Carcaterra
,
A.
, and
Akay
,
A.
,
2008
, “
Tailored Damping Induced by a Cluster of Resonators
,”
23rd International Conference on Noise and Vibration Engineering 2008
,
ISMA 2008
,
Leuven, Belgium
,
Sept. 15–17
,
Katholieke Universiteit Leuven
, pp.
845
856
.
43.
Papangelo
,
A.
,
Putignano
,
C.
, and
Hoffmann
,
N.
,
2020
, “
Self-Excited Vibrations Due to Viscoelastic Interactions
,”
Mech. Syst. Signal. Process.
,
144
, p.
106894
. 10.1016/j.ymssp.2020.106894
44.
Papangelo
,
A.
,
Hoffmann
,
N.
,
Grolet
,
A.
,
Stender
,
M.
, and
Ciavarella
,
M.
,
2018
, “
Multiple Spatially Localized Dynamical States in Friction-Excited Oscillator Chains
,”
J. Sound. Vib.
,
417
, pp.
56
64
. 10.1016/j.jsv.2017.11.056
45.
Popp
,
K.
,
2005
, “
Modelling and Control of Friction-Induced Vibrations
,”
Math. Comput. Model. Dyn. Syst.
,
11
(
3
), pp.
345
369
. 10.1080/13873950500076131
46.
Chatterjee
,
S.
,
2008
, “
On the Design Criteria of Dynamic Vibration Absorbers for Controlling Friction-Induced Oscillations
,”
J. Vib. Control
,
14
(
3
), pp.
397
415
. 10.1177/1077546307080030
47.
Chatterjee
,
S.
, and
Mahata
,
P.
,
2009
, “
Time-Delayed Absorber for Controlling Friction-Driven Vibration
,”
J. Sound. Vib.
,
322
(
1
), pp.
39
59
. 10.1016/j.jsv.2008.11.016
48.
Chatterjee
,
S.
,
2011
, “
On the Efficacy of an Active Absorber With Internal State Feedback for Controlling Self-Excited Oscillations
,”
J. Sound. Vib.
,
330
(
7
), pp.
1285
1299
. 10.1016/j.jsv.2010.10.011
49.
Niknam
,
A.
, and
Farhang
,
K.
,
2019
, “
On the Passive Control of Friction-Induced Instability Due to Mode Coupling
,”
ASME J. Dyn. Syst. Meas. Control.
,
141
(
8
), p.
084503
. 10.1115/1.4043121
50.
Bergeot
,
B.
,
Berger
,
S.
, and
Bellizzi
,
S.
,
2018
, “
Mode Coupling Instability Mitigation in Friction Systems by Means of Nonlinear Energy Sinks: Numerical Highlighting and Local Stability Analysis
,”
J. Vib. Control
,
24
(
15
), pp.
3487
3511
. 10.1177/1077546317707101
51.
Hultén
,
J.
, and
Flint
,
J.
,
1999
, “
An Assumed Modes Method Approach to Disc Brake Squeal Analysis
,”
Technical Report, SAE Technical Paper 1999-01-1335
. https://doi.org/10.4271/1999-01-1335
52.
Bergeot
,
B.
, and
Bellizzi
,
S.
,
2019
, “
Steady-State Regimes Prediction of a Multi-Degree-of-Freedom Unstable Dynamical System Coupled to a Set of Nonlinear Energy Sinks
,”
Mech. Syst. Signal. Process.
,
131
, pp.
728
750
. 10.1016/j.ymssp.2019.05.045
53.
Snoun
,
C.
,
Bergeot
,
B.
, and
Berger
,
S.
,
2020
, “
Prediction of the Dynamic Behavior of an Uncertain Friction System Coupled to Nonlinear Energy Sinks Using a Multi-Element Generalized Polynomial Chaos Approach
,”
Eur. J. Mech. A/Solids
,
80
, p.
103917
. 10.1016/j.euromechsol.2019.103917
54.
Lee
,
C.-W.
,
1991
, “
A Complex Modal Testing Theory for Rotating Machinery
,”
Mech. Syst. Signal. Process.
,
5
(
2
), pp.
119
137
. 10.1016/0888-3270(91)90019-2
55.
Lee
,
C.-W.
, and
Joh
,
Y.-D.
,
1993
, “
Theory of Excitation Methods and Estimation of Frequency Response Functions in Complex Modal Testing of Rotating Machinery
,”
Mech. Syst. Signal. Process.
,
7
(
1
), pp.
57
74
. 10.1016/0888-3270(93)90005-H
56.
Muszynska
,
A.
,
2005
,
Rotordynamics
,
CRC Press
,
Boca Raton, FL
.
57.
Genta
,
G.
,
2005
,
Dynamics of Rotating Systems
,
Springer
,
New York
.
58.
Leissa
,
A. W.
,
1974
, “
On a Curve Veering Aberration
,”
Z. Angew. Math. Phys. ZAMP
,
25
(
1
), pp.
99
111
. 10.1007/BF01602113
59.
Perkins
,
N.
, and
Mote
,
C.
,
1986
, “
Comments on Curve Veering in Eigenvalue Problems
,”
J. Sound. Vib.
,
106
(
3
), pp.
451
463
. 10.1016/0022-460X(86)90191-4
60.
Liu
,
X.
,
2002
, “
Behavior of Derivatives of Eigenvalues and Eigenvectors in Curve Veering and Mode Localization and Their Relation to Close Eigenvalues
,”
J. Sound. Vib.
,
256
(
3
), pp.
551
564
. 10.1006/jsvi.2002.5010
61.
du Bois
,
J. L.
,
Adhikari
,
S.
, and
Lieven
,
N. A.
,
2009
, “
Eigenvalue Curve Veering in Stressed Structures: An Experimental Study
,”
J. Sound. Vib.
,
322
(
4
), pp.
1117
1124
. 10.1016/j.jsv.2008.12.014
62.
Giannini
,
O.
,
2016
, “
Unstable Transient Response of Gyroscopic Systems With Stable Eigenvalues
,”
Mech. Syst. Signal. Process.
,
75
, pp.
1
10
. 10.1016/j.ymssp.2016.01.008
63.
Giannini
,
O.
, and
Sestieri
,
A.
,
2016
, “
Experimental Characterization of Veering Crossing and Lock-In in Simple Mechanical Systems
,”
Mech. Syst. Signal. Process.
,
72
, pp.
846
864
. 10.1016/j.ymssp.2015.11.012
64.
Allemang
,
R. J.
,
2003
, “
The Modal Assurance Criterion—Twenty Years of Use and Abuse
,”
Sound Vib.
,
37
(
8
), pp.
14
23
.
65.
Afolabi
,
D.
, and
Mehmed
,
O.
,
1993
, “
On Curve Veering and Flutter of Rotating Blades
,”
Proceedings of the ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition.
Volume 2: Combustion and Fuels; Oil and Gas Applications; Cycle Innovations; Heat Transfer; Electric Power; Industrial and Cogeneration; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; IGTI Scholar Award, Cincinnati, OH, May 24–27
,
American Society of Mechanical Engineers
, p.
V002T12A022
.
You do not currently have access to this content.