Abstract

In this paper, an advanced non-dimensional dynamic influence function method (NDIF method) for eigenvalue analysis of arbitrarily shaped two-dimensional acoustic cavities with the mixed boundary consisting of the pressure-release and rigid-wall boundaries is proposed. The existing NDIF method has the weakness of having to calculate the singularity of the final system matrix of an analyzed acoustic cavity in the frequency band of interest to obtain the eigenvalues of the cavity because the final system matrix is dependent on the frequency. The newly proposed NDIF method in this paper provides an efficient way to extract accurate eigenvalues and eigenmodes by successfully overcoming the above weaknesses. Finally, the validity and accuracy of the proposed method are shown through verification examples.

References

1.
Kang
,
S. W.
, and
Lee
,
J. M.
,
2000
, “
Eigenmode Analysis of Arbitrarily Shaped Two-Dimensional Cavities by the Method of Point-Matching
,”
J. Acoust. Soc. Am.
,
107
(
3
), pp.
1153
1160
. 10.1121/1.428456
2.
Bathe
,
K.
,
1982
,
Finite Element Procedures in Engineering Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
3.
Brebbia
,
C. A.
,
Telles
,
J. C. F.
, and
Wrobel
,
L. C.
,
1984
,
Boundary Element Techniques
,
Springer-Verlag
,
New York
.
4.
Kang
,
S. W.
, and
Atluri
,
S. N.
,
2014
, “
Application of Nondimensional Dynamic Influence Function Method for Eigenmode Analysis of Two-Dimensional Acoustic Cavities
,”
Adv. Mech. Eng.
,
6
, pp.
1
9
.
5.
Nardini
,
D.
, and
Brebbia
,
C. A.
,
1982
, “
A New Approach to Free Vibration Analysis Using Boundary Elements
,”
Appl. Math. Modell.
,
7
(
3
), pp.
157
162
. 10.1016/0307-904X(83)90003-3
6.
Kirkup
,
S. M.
, and
Amini
,
S.
,
1993
, “
Solution of the Helmholtz Eigenvalue Problem via the Boundary Element Method
,”
Int. J. Numer. Methods Eng.
,
36
(
2
), pp.
321
330
. 10.1002/nme.1620360210
7.
Ali
,
A.
,
Rajakumar
,
C.
, and
Yunus
,
S. M.
,
1995
, “
Advances in Acoustic Eigenvalue Analysis Using Boundary Element Method
,”
Comput. Struct.
,
56
(
5
), pp.
837
847
. 10.1016/0045-7949(95)00012-6
8.
Provatidis
,
C. G.
,
2004
, “
On DR/BEM for Eigenvalue Analysis of 2-D Acoustics
,”
Comput. Mech.
,
34
(
1
), pp.
41
53
. 10.1007/s00466-004-0600-2
9.
Wang
,
F.
,
Li
,
S.
, and
Zhao
,
D. Y.
,
2009
, “
Research on the Approximation Functions in the Dual Reciprocity Boundary Element Method for the Three-Dimensional Acoustic Eigenvalue Analysis
,”
J. Ship Mech.
,
13
(
1
), pp.
136
143
.
10.
Gao
,
H.
,
Matsumoto
,
T.
,
Takahashi
,
T.
, and
Isakari
,
H.
,
2013
, “
Eigenvalue Analysis for Acoustic Problem in 3D by Boundary Element Method With the Block Sakurai-Sugiura Method
,”
Eng. Anal. Boundary Elem.
,
37
(
6
), pp.
914
923
. 10.1016/j.enganabound.2013.03.015
11.
Amir
,
N.
, and
Starrobinski
,
R.
,
1996
, “
Finding the Eigenmodes of Two-Dimensional Cavities with Two Axes of Symmetry
,”
Acta Acustica United Acustica
,
82
(
6
), pp.
811
823
.
12.
Willatzen
,
M.
, and
Voon
,
L. C.
,
2004
, “
Eigenmodes of Triaxial Ellipsoidal Acoustical Cavities With Mixed Boundary Conditions
,”
J. Acoust. Soc. Am.
,
116
(
6
), pp.
3279
3283
. 10.1121/1.1819391
13.
Koch
,
W.
,
2005
, “
Acoustic Resonances in Rectangular Open Cavities
,”
Am. Inst. Aeronaut. Astronaut. J.
,
43
(
11
), pp.
2342
2349
. 10.2514/1.10975
14.
Lee
,
W. M.
,
2011
, “
Natural Mode Analysis of an Acoustic Cavity With Multiple Elliptical Boundaries by Using the Collocation Multipole Method
,”
J. Sound Vib.
,
330
(
20
), pp.
4915
4929
. 10.1016/j.jsv.2011.05.001
15.
Kang
,
S. W.
,
Atluri
,
S. N.
, and
Kim
,
S. H.
,
2012
, “
Application of the Non-Dimensional Dynamic Influence Function Method for Free Vibration Analysis of Arbitrarily Shaped Membranes
,”
ASME J. Vib. Acoust.
,
134
(
4
), p.
041008
. 10.1115/1.4006414
16.
Spiegel
,
M. R.
,
1983
,
Advanced Mathematics
,
McGraw-Hill, Inc
,
Singapore
. 10.1115/1.4006414
17.
Gohberg
,
I.
,
Lancaster
,
P.
, and
Rodman
,
L.
,
1982
,
Matrix Polynomials
,
Academic Press
,
New York
.
18.
Blevins
,
R. D.
,
1979
,
Formulas for Natural Frequency and Mode Shape
,
Litton Educational Publishing
,
New York
, p.
341
.
You do not currently have access to this content.