Abstract

In this paper, we identified the material constitutive parameters of the human skull from reported tensile test results. Initially, we applied both linear-elastic and Mooney–Rivlin nonlinear hyperelastic constitutive models to the available tensile test data at different strain rates of 0.005, 0.10, 10, and 150 1/sec. It was shown that the suggested hyperelastic model fitted the test results with higher accuracy in comparison with the linear-elastic model. In the next step, the experimental modal analysis was carried out through roving hammer-impact tests on a dried human skull. The first four natural frequencies of the skull were measured to be 496, 543, 1250, and 1287 Hz, and these values were verified by the modal assurance criterion. Then, a 3D finite element (FE) model of that human skull was created by a 3D scanner and discretized to carry out a computational modal analysis. The performance of the determined material properties for the human skull from both linear and hyperelastic material models was evaluated using FE modal analysis. The calculated modal frequencies were then compared to the experimentally measured frequencies. It was shown that the material parameters from both the linear and hyperelastic constitutive models obtained at a strain rate of 0.10 1/sec, provided the best performance in computational modal analysis with minimum deviations relative to the experimental results. These results confer a better understanding of the human skull behavior among different strain rates, which could increase the accuracy of nonlinearity dynamic simulations on the skull.

References

1.
Faul
,
M.
,
Xu
,
L.
,
Wald
,
M. M.
, and
Coronado
,
V. G.
,
2010
,
Traumatic Brain Injury in the United States
,
Centers for Disease Control and Prevention, National Center for Injury Prevention and Control
,
Atlanta, GA
.
2.
MacDonald
,
C. L.
,
Johnson
,
A. M.
,
Nelson
,
E. C.
,
Werner
,
N. J.
,
Fang
,
R.
,
Flaherty
,
S. F.
, and
Brody
,
D. L.
,
2014
, “
Functional Status After Blast-Plus-Impact Complex Concussive Traumatic Brain Injury in Evacuated United States Military Personnel
,”
J. Neurotrauma
,
31
(
10
), pp.
889
898
. 10.1089/neu.2013.3173
3.
Langlois
,
J. A.
,
Rutland-Brown
,
W.
, and
Wald
,
M. M.
,
2006
, “
The Epidemiology and Impact of Traumatic Brain Injury: A Brief Overview
,”
J. Head Trauma Rehabil.
,
21
(
5
), pp.
375
378
. 10.1097/00001199-200609000-00001
4.
Laksari
,
K.
,
Wu
,
L. C.
,
Kurt
,
M.
,
Kuo
,
C.
, and
Camarillo
,
D. C.
,
2015
, “
Resonance of Human Brain Under Head Acceleration
,”
J. R. Soc., Interface
,
12
(
108
), p.
20150331
. 10.1098/rsif.2015.0331
5.
Sarvghad-Moghaddam
,
H.
,
Jazi
,
M. S.
,
Rezaei
,
A.
,
Karami
,
G.
, and
Ziejewski
,
M.
,
2015
, “
Examination of the Protective Roles of Helmet/Faceshield and Directionality for Human Head Under Blast Waves
,”
Computer Methods Biomech. Biomed. Eng.
,
18
(
16
), pp.
1846
1855
. 10.1080/10255842.2014.977878
6.
Farid
,
M. H.
,
Eslaminejad
,
A.
,
Ramzanpour
,
M.
,
Ziejewski
,
M.
, and
Karami
,
G.
,
2019
, “
The Strain Rates of the Brain and Skull Under Dynamic Loading
,”
Proceedings of ASME 2018 International Mechanical Engineering Congress and Exposition
,
Pittsburgh, PA
,
Nov. 9–15
,
American Society of Mechanical Engineers
,
New York
.
7.
Laksari
,
K.
,
Kurt
,
M.
,
Babaee
,
H.
,
Kleiven
,
S.
, and
Camarillo
,
D.
,
2018
, “
Mechanistic Insights Into Human Brain Impact Dynamics Through Modal Analysis
,”
Phys. Rev. Lett.
,
120
(
13
), p.
138101
. 10.1103/PhysRevLett.120.138101
8.
Farid
,
M. H.
,
Eslaminejad
,
A.
,
Ziejewski
,
M.
, and
Karami
,
G.
,
2017
, “
A Study on the Effects of Strain Rates on Characteristics of Brain Tissue
,”
Proceedings of ASME 2017 International Mechanical Engineering Congress and Exposition
,
Tampa, FL
,
Nov. 3–9
,
American Society of Mechanical Engineers
,
New York
.
9.
Saboori
,
P.
, and
Walker
,
G.
,
2019
, “
Brain Injury and Impact Characteristics
,”
Annals of Biomedical Engineering
,
47
(
9
), pp.
1982
1992
. 10.1007/s10439-019-02199-z
10.
Eslaminejad
,
A.
,
Sarvghad-Moghaddam
,
H.
,
Rezaei
,
A.
,
Ziejewski
,
M.
, and
Karami
,
G.
,
2017
, “
Comparison of Brain Tissue Material Finite Element Models Based on Threshold for Traumatic Brain Injury
,”
Proceedings of ASME 2016 International Mechanical Engineering Congress and Exposition
,
Phoenix, AZ
,
Nov. 11–17
,
American Society of Mechanical Engineers
,
New York
.
11.
Tse
,
K. M.
,
Lim
,
S. P.
,
Tan
,
V. B. C.
, and
Lee
,
H. P.
,
2014
, “
A Review of Head Injury and Finite Element Head Models
,”
Am. J. Eng. Technol. Soc.
,
1
(
5
), pp.
28
52
.
12.
Rezaei
,
A.
,
Sarvghad-Moghaddam
,
H.
,
Eslaminejad
,
A.
,
Ziejewski
,
M.
, and
Karami
,
G.
,
2017
, “
Skull Deformation Has No Impact on the Variation of Brain Intracranial Pressure
,”
Proceedings of ASME 2016 International Mechanical Engineering Congress and Exposition
,
Phoenix, AZ
,
Nov. 11–17
,
American Society of Mechanical Engineers
,
New York
.
13.
McElhaney
,
J. H.
,
Fogle
,
J. L.
,
Melvin
,
J. W.
,
Haynes
,
R. R.
,
Roberts
,
V. L.
, and
Alem
,
N. M.
,
1970
, “
Mechanical Properties of Cranial Bone
,”
J. Biomech.
,
3
(
5
), pp.
495
511
. 10.1016/0021-9290(70)90059-X
14.
Evans
,
F. G.
, and
Lissner
,
H. R.
,
1957
, “
Tensile and Compressive Strength of Human Parietal Bone
,”
J. Appl. Physiol.
,
10
(
3
), pp.
493
497
. 10.1152/jappl.1957.10.3.493
15.
Hosseini-Farid
,
M.
,
Rezaei
,
A.
,
Eslaminejad
,
A.
,
Ramzanpour
,
M.
,
Ziejewski
,
M.
, and
Karami
,
G.
,
2019
, “
Instantaneous and Equilibrium Responses of the Brain Tissue by Stress Relaxation and Quasi-Linear Viscoelasticity Theory
,”
Sci. Iran.
,
26
(
4
), pp.
2047
2056
. 10.24200/sci.2019.21314
16.
Cheng
,
J.
, and
Reichert
,
K.
,
1998
, “Adult and Child—Head Anatomy,”
Frontiers in Head and Neck Injury
,
N.
Yoganandan
,
F. A.
Pintar
,
S. J.
Larson
, and
A.
Sances
, eds.,
IOS Press
,
Washington, DC
, pp.
3
17
.
17.
Cotton
,
R.
,
Pearce
,
C. W.
,
Young
,
P. G.
,
Kota
,
N.
,
Leung
,
A.
,
Bagchi
,
A.
, and
Qidwai
,
S.
,
2016
, “
Development of a Geometrically Accurate and Adaptable Finite Element Head Model for Impact Simulation: The Naval Research Laboratory–Simpleware Head Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
1
), pp.
101
113
. 10.1080/10255842.2014.994118
18.
Margulies
,
S. S.
, and
Thibault
,
K. L.
,
2000
, “
Infant Skull and Suture Properties: Measurements and Implications for Mechanisms of Pediatric Brain Injury
,”
ASME J. Biomech. Eng.
,
122
(
4
), pp.
364
371
. 10.1115/1.1287160
19.
Wood
,
J. L.
,
1971
, “
Dynamic Response of Human Cranial Bone
,”
J. Biomech.
,
4
(
1
), pp.
IN1
IN3
. 10.1016/0021-9290(71)90010-8
20.
Motherway
,
J. A.
,
Verschueren
,
P.
,
Van der Perre
,
G.
,
Vander Sloten
,
J.
, and
Gilchrist
,
M. D.
,
2009
, “
The Mechanical Properties of Cranial Bone: The Effect of Loading Rate and Cranial Sampling Position
,”
J. Biomech.
,
42
(
13
), pp.
2129
2135
. 10.1016/j.jbiomech.2009.05.030
21.
HyperMesh
,
A.
,
2010
, HyperMesh 11.0,
Altair Engineering, Inc.
,
Troy, MI
.
22.
Hallquist
,
J. O.
,
2006
,
LS-DYNA Theory Manual
, Vol.
3
,
Livermore Software Technology Corporation
,
Livermore, CA
.
23.
Delille
,
R.
,
Lesueur
,
D.
,
Potier
,
P.
,
Drazetic
,
P.
, and
Markiewicz
,
E.
,
2007
, “
Experimental Study of the Bone Behaviour of the Human Skull Bone for the Development of a Physical Head Model
,”
Int. J. Crashworthiness
,
12
(
2
), pp.
101
108
. 10.1080/13588260701433081
24.
Mendis
,
K.
,
Stalnaker
,
R.
, and
Advani
,
S.
,
1995
, “
A Constitutive Relationship for Large Deformation Finite Element Modeling of Brain Tissue
,”
ASME J. Biomech. Eng.
,
117
(
3
), pp.
279
285
. 10.1115/1.2794182
25.
Shojaeiarani
,
J.
,
Hosseini-Farid
,
M.
, and
Bajwa
,
D.
,
2019
, “
Modeling and Experimental Verification of Nonlinear Behavior of Cellulose Nanocrystals Reinforced Poly (Lactic Acid) Composites
,”
Mech. Mater.
,
135
(
1
), pp.
77
87
. 10.1016/j.mechmat.2019.05.003
26.
Avaitable
,
P.
,
2018
,
Modal Testing a Practitioner's Guide
,
Wiley
,
Hoboken, NJ
.
27.
Eslaminejad
,
A.
,
Ziejewski
,
M.
, and
Karami
,
G.
,
2019
, “
Vibrational Properties of a Hemispherical Shell With Its Inner Fluid Pressure: An Inverse Method for Noninvasive Intracranial Pressure Monitoring
,”
ASME J. Vib. Acoust.
,
141
(
4
), p.
041002
. 10.1115/1.4042928
28.
Crystal-Instrument-Corporation
,
2017
,
EDM Modal Unser's Manual: Complete Modal Testing and Analysis Suite
,
Santa Clara, CA
.
29.
Ewins
,
D.
,
2000
,
Modal Testing: Theory, Practice and Application, Vol. 2
,
Research Studies Press
,
Letchworth, Hertfordshire, UK
.
30.
Eslaminejad
,
A.
,
Ziejewski
,
M.
, and
Karami
,
G.
,
2019
, “
An Experimental–Numerical Modal Analysis for the Study of Shell-Fluid Interactions in a Clamped Hemispherical Shell
,”
Appl. Acoustics
,
152
(
1
), pp.
110
117
. 10.1016/j.apacoust.2019.03.029
31.
Hosseini-Farid
,
M.
,
2019
,
Mechanical Characterization and Constitutive Modeling of Rate-Dependent Viscoelastic Brain Tissue Under High Rate Loadings
,
North Dakota State University
,
Fargo, ND
.
32.
Schwarz
,
B. J.
, and
Richardson
,
M. H.
,
1999
, “
Experimental Modal Analysis
,”
CSI Reliab. Week
,
35
(
1
), pp.
1
12
.
You do not currently have access to this content.