Abstract

The influences of stagger angle (α) and pretwist angle (βL) of blades on the coupling vibration among shaft bending and blade bending in a shaft-disk-blade (SDB) system are investigated using a Lagrangian approach in combination with the assumed modes method (AMM). The disk is rigid, and the flexible shaft is supported with two rigid bearings. It is shown that α and βL have variable effects on the coupling vibration because their influences can be increased, reduced, or even completely eliminated for different values of disk location (λ), blade thickness ratio (δ), and blade aspect ratio (γ). To study the coupling vibration in an SDB system, consideration of λ, δ, and γ are very important because those can alter the coupling magnitude, the coupling pattern as well as the predominant modes. Nevertheless, previous researches rarely take into account these parameters. Moreover, in the present work, to investigate the natural frequencies and critical speeds versus λ, δ, and γ, new diagrams are introduced. Also, the relation between the in-plane and out-of-plane motions of the blades with the coupling vibration is precisely analyzed.

References

1.
Crawley
,
E. F.
,
Ducharme
,
E. H.
, and
Mokadam
,
D. R.
,
1986
, “
Analytical and Experimental Investigation of the Coupled Bladed Disk/Shaft Whirl of Cantilevered Turbofan
,”
ASME J. Eng. Gas Turbines Power
,
108
(
4
), pp.
567
575
. 10.1115/1.3239948
2.
Lesaffre
,
N.
,
Sinou
,
J. J.
, and
Thouverez
,
F.
,
2005
, “
Stability Analysis of a Flexible Bladed-Rotor
,”
Key Eng. Mater.
,
293–294
, pp.
409
416
. 10.4028/www.scientific.net/KEM.293-294.409
3.
Anegawa
,
N.
,
Fujiwara
,
H.
,
Okabe
,
A.
, and
Matsushita
,
O.
,
2008
, “
Resonance and Instability of Blade-Shaft Coupled Bending Vibrations with In-Plane Blade Vibration
,”
Int. J. Fluid Mach. Syst.
,
1
(
1
), pp.
169
180
. 10.5293/IJFMS.2008.1.1.169
4.
Anegawa
,
N.
,
Fujiwara
,
H.
, and
Matsushita
,
O.
,
2010
, “
Vibration Diagnosis Featuring Blade-Shaft Coupling Effect of Turbine Rotor Models
,”
ASME J. Eng. Gas Turbines Power
,
132
(
2
), pp.
1
8
. 10.1115/1.4001980
5.
Li
,
C. F.
,
She
,
H. X.
,
Liu
,
W.
, and
Wen
,
B. C.
,
2017
, “
The Influence of Shaft’s Bending on the Coupling Vibration of a Flexible Blade-Rotor System
,”
Math. Prob. Eng.
,
2017
, pp.
1
19
. 10.1155/2017/7313956
6.
Yang
,
C. H.
, and
Huang
,
S. C.
,
2005
, “
The Coupled Vibration in a Shaft-Disk-Blade System
,”
J. Chin. Inst. Eng.
,
28
(
1
), pp.
89
99
. 10.1080/02533839.2005.9670975
7.
Al-Bedoor
,
B. O.
,
Aedwesi
,
S.
, and
Al-Nassar
,
Y.
,
2006
, “
Blades Condition Monitoring Using Shaft Torsional Vibration Signals
,”
J. Qual. Maint. Eng.
,
12
(
3
), pp.
275
293
. 10.1108/13552510610685110
8.
Al-Bedoor
,
B. O.
,
2007
, “
Natural Frequencies of Coupled Blade-Bending and Shaft-Torsional Vibrations
,”
Shock Vib.
,
14
(
1
), pp.
65
80
. 10.1155/2007/506165
9.
Kudo
,
T.
,
Matsushita
,
O.
,
Okabe
,
A.
,
Shiohata
,
K.
,
Fujiwara
,
H.
, and
Sakurai
,
S.
,
2013
, “
Experimental Study of Torsional-Bending Coupled Vibration of a Rotor System with a Bladed Disk
,”
Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE 2013
,
Portland, Oregon
,
Aug. 4–7.
10.
Lee
,
H.
,
Song
,
J. S.
,
Cha
,
S. J.
, and
Na
,
S.
,
2013
, “
Dynamic Response of Coupled Shaft Torsion and Blade Bending in Rotor Blade System
,”
J. Mech. Sci. Technol.
,
27
(
9
), pp.
2585
2597
. 10.1007/s12206-013-0702-x
11.
Scheepers
,
R.
, and
Heyns
,
P. S.
,
2016
, “
A Comparative Study of Finite Element Methodologies for the Prediction of Torsional Response of Bladed Rotors
,”
J. Mech. Sci. Technol.
,
30
(
9
), pp.
4063
4074
. 10.1007/s12206-016-0819-9
12.
Ma
,
H.
,
Lu
,
Y.
,
Wu
,
Z.
,
Tai
,
X.
,
Li
,
H.
, and
Wen
,
B.
,
2015
, “
A New Dynamic Model of Rotor-Blade Systems
,”
J. Sound Vib.
,
357
, pp.
168
194
. 10.1016/j.jsv.2015.07.036
13.
Ma
,
H.
,
Lu
,
Y.
,
Wu
,
Z.
,
Tai
,
X.
, and
Wen
,
B.
,
2016
, “
Vibration Response Analysis of a Rotational Shaft-Disk-Blade System With Blade-tip Rubbing
,”
Int. J. Mech. Sci.
,
107
, pp.
110
125
. 10.1016/j.ijmecsci.2015.12.026
14.
Palladino
,
J. A.
, and
Rossettos
,
J. N.
,
1982
, “
Finite Element Analysis of the Dynamics of Flexible Disk Rotor System
,”
ASME 1982 International Gas Turbine Conference and Exhibit
, p.
V005T13A011
, Paper No. 82-GT-240.
15.
Crawley
,
E. F.
, and
Mokadam
,
D. R.
,
1984
, “
Stagger Angle Dependence of Inertial and Elastic Coupling in Bladed Disks
,”
ASME J. Vib. Acoust.
,
106
(
2
), pp.
181
188
. 10.1115/1.3269167
16.
Sakata
,
M.
,
Kimura
,
K.
,
Park
,
S. K.
, and
Ohnabe
,
H.
,
1989
, “
Vibration of Bladed Flexible Rotor due to Gyroscopic Moment
,”
J. Sound Vib.
,
131
(
3
), pp.
417
430
. 10.1016/0022-460X(89)91002-X
17.
Okamoto
,
S.
,
Sakata
,
M.
,
Kimura
,
K.
, and
Ohnabe
,
H.
,
1995
, “
Vibration Analysis of a High Speed and Light Weight Rotor System Subjected to a Pitching or Turning Motion, II: A Flexible Rotor System on Flexible Suspension
,”
J. Sound Vib.
,
184
(
5
), pp.
887
906
. 10.1006/jsvi.1995.0351
18.
Loewy
,
R. G.
, and
Khader
,
N.
,
1984
, “
Structural Dynamics of Rotating Bladed-Disk Assemblies Coupled with Flexible Shaft Motions
,”
AIAA J.
,
22
(
9
), pp.
1319
1327
. 10.2514/3.48567
19.
Khader
,
N.
, and
Lowey
,
R. G.
,
1989
, “
Blade Mistuning Coupled With Shaft Flexibility Effects in Rotor Aeroelasticity
,”
ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition
, p.
V005T13A023
, Paper No. 89-GT-330.
20.
Khader
,
N.
, and
Lowey
,
R. G.
,
1990
, “
Shaft Flexibility Effects on the Forced Response of a Bladed-Disk Assembly
,”
J. Sound Vib.
,
139
(
3
), pp.
469
485
. 10.1016/0022-460X(90)90677-R
21.
Chun
,
S. B.
, and
Lee
,
C. W.
,
1996
, “
Vibration Analysis of Shaft-Bladed Disk System Using Substructure Synthesis and Assumed Modes Method
,”
J. Sound Vib.
,
189
(
5
), pp.
587
608
. 10.1006/jsvi.1996.0038
22.
Yang
,
C. H.
, and
Huang
,
S. C.
,
2007
, “
The Influence of Disk’s Flexibility on Coupling Vibration of Shaft–Disk–Blades Systems
,”
J. Sound Vib.
,
301
(
1-2
), pp.
1
17
. 10.1016/j.jsv.2006.01.053
23.
Yang
,
C. H.
, and
Huang
,
S. C.
,
2007
, “
Coupling Vibrations in Rotating Shaft-Disk-Blades System
,”
ASME J. Vib. Acoust.
,
129
(
1
), pp.
48
57
. 10.1115/1.2221328
24.
Chiu
,
Y. J.
, and
Huang
,
S. C.
,
2007
, “
The Influence on Coupling Vibration of a Rotor System due to a Mistuned Blade Length
,”
Int. J. Mech. Sci.
,
49
(
4
), pp.
522
532
. 10.1016/j.ijmecsci.2006.05.016
25.
Zhou
,
S. T.
,
Chiu
,
Y. J.
,
Yu
,
G. F.
,
Yang
,
C. H.
,
Huang
,
H.
, and
Jian
,
S.
,
2017
, “
An Assumed Mode Method and Finite Element Method Investigation of the Coupled Vibration in a Flexible-Disk Rotor System with Lacing Wires
,”
J. Mech. Sci. Technol.
,
31
(
2
), pp.
577
586
. 10.1007/s12206-017-0110-8
26.
Chiu
,
Y. J.
,
Li
,
X. Y.
,
Chen
,
Y. C.
,
Jian
,
S. R.
,
Yang
,
C. H.
, and
Lin
,
I. H.
,
2017
, “
Three Methods for Studying Coupled Vibration in a Multi-Flexible Disk Rotor System
,”
J. Mech. Sci. Technol.
,
31
(
11
), pp.
5219
5229
. 10.1007/s12206-017-1015-2
27.
She
,
H.
,
Li
,
C.
,
Tang
,
Q.
, and
Wena
,
B.
,
2018
, “
The Investigation of the Coupled Vibration in a Flexible-Disk Blades System Considering the Influence of Shaft Bending Vibration
,”
Mech. Syst. Sig. Proc.
,
111
, pp.
545
569
. 10.1016/j.ymssp.2018.03.044
28.
Li
,
C.
,
She
,
H.
,
Tang
,
Q.
, and
Wen
,
B.
,
2019
, “
The Coupling Vibration Characteristics of a Flexible Shaft-Disk-Blades System with Mistuned Features
,”
Appl. Math. Modell.
,
67
, pp.
557
572
. 10.1016/j.apm.2018.09.041
29.
Heydari
,
H.
, and
Khorram
,
A.
,
2019
, “
Effects of Location and Aspect Ratio of a Flexible Disk on Natural Frequencies and Critical Speeds of a Rotating Shaft-Disk System
,”
Int. J. Mech. Sci.
,
152
, pp.
596
612
. 10.1016/j.ijmecsci.2019.01.022
30.
Baek
,
S.
, and
Epureanu
,
B.
,
2017
, “
Reduced-Order Modeling of Bladed Disks With Friction Ring Dampers
,”
ASME J. Vib. Acoust.
,
139
(
6
), pp.
1
9
. 10.1115/1.4036952
31.
Yuan
,
J.
,
Scarpa
,
F.
,
Titurus
,
B.
,
Allegri
,
G.
,
Patsias
,
S.
, and
Rajasekaran
,
R.
,
2017
, “
Novel Frame Model for Mistuning Analysis of Bladed Disc Systems
,”
ASME J. Vib. Acoust.
,
139
(
3
), p.
031016
. 10.1115/1.4036110
You do not currently have access to this content.