Abstract

This paper presents a shape memory alloy actuator design using a bimorph structure capable of high-speed actuation and low power consumption. Two active layers of shape memory alloy wires are separated by a passive layer of thermoplastic polyurethane. This structure results in a bending actuator when current is alternated between the two active shape memory alloy layers. Actuators of lengths 20, 25, 30, 35, and 40 mm were tested at peak current input of 110, 120, 130, and 140 mA. The 40-mm actuator was shown to have a natural frequency of 11.4 Hz with a bending displacement of 26.4 mm perpendicular to the neutral position and a power input of 0.78 W (140 mA peak current input). A relationship between the input current and the resulting vibratory characteristics was found. As the current increases, the natural frequency decreases and the damping ratio increases. The experimental results are compared with a finite element method (FEM) vibration analysis and an Euler–Bernoulli cantilever beam equations.

References

1.
Mirvakili
,
S. M.
, and
Hunter
,
I. W.
,
2018
, “
Artificial Muscles: Mechanisms, Applications, and Challenges
,”
Adv. Mater.
,
30
(
6
), p.
1704407
. 10.1002/adma.201704407
2.
Hunter
,
I. W.
, and
Lafontaine
,
S.
,
1992
, “
A Comparison of Muscle With Artificial Actuators
,”
Technical Digest IEEE Solid-State Sensor and Actuator Workshop
,
June 22–25
,
Hilton Head Island, SC
, pp.
178
185
.
3.
Brochu
,
P.
, and
Pei
,
Q.
,
2010
, “
Advances in Dielectric Elastomers for Actuators and Artificial Muscles
,”
Macromol. Rapid. Commun.
,
31
(
1
), pp.
10
36
. 10.1002/marc.200900425
4.
Kim
,
H.-I.
,
Han
,
M.-W.
,
Song
,
S.-H.
, and
Ahn
,
S.-H.
,
2016
, “
Soft Morphing Hand Driven by SMA Tendon Wire
,”
Compos. Part B Eng.
,
105
, pp.
138
148
. 10.1016/j.compositesb.2016.09.004
5.
Rusinek
,
R.
,
Warminski
,
J.
,
Szymanski
,
M.
,
Kecik
,
K.
, and
Kozik
,
K.
,
2017
, “
Dynamics of the Middle Ear Ossicles With an SMA Prosthesis
,”
Int. J. Mech. Sci.
,
127
, pp.
163
175
. 10.1016/j.ijmecsci.2016.10.004
6.
Rusinek
,
R.
,
Kecik
,
K.
,
Szymanski
,
M.
, and
Rekas
,
J.
,
2018
, “
An Influence of Temperature on Reconstructed Middle Ear With Shape Memory Prosthesis
,”
Meccanica
,
53
(
8
), pp.
1959
1980
. 10.1007/s11012-017-0798-7
7.
Kim
,
S.
,
Laschi
,
C.
, and
Trimmer
,
B.
,
2013
, “
Soft Robotics: A Bioinspired Evolution in Robotics
,”
Trends Biotechnol.
,
31
(
5
), pp.
287
294
. 10.1016/j.tibtech.2013.03.002
8.
Villanueva
,
A.
,
Smith
,
C.
, and
Priya
,
S.
,
2011
, “
A Biomimetic Robotic Jellyfish (Robojelly) Actuated by Shape Memory Alloy Composite Actuators
,”
Bioinspiration Biomimetics
,
6
(
3
), p.
036004
. 10.1088/1748-3182/6/3/036004
9.
Villanueva
,
A.
,
Joshi
,
K.
,
Blottman
,
J.
, and
Priya
,
S.
,
2010
, “
A Bio-Inspired Shape Memory Alloy Composite (BISMAC) Actuator
,”
Smart Mater. Struct.
,
19
(
2
), p.
025013
. 10.1088/0964-1726/19/2/025013
10.
Smith
,
C.
,
Villanueva
,
A.
,
Joshi
,
K.
,
Tadesse
,
Y.
, and
Priya
,
S.
,
2010
, “
Working Principle of Bio-Inspired Shape Memory Alloy Composite Actuators
,”
Smart Mater. Struct.
,
20
(
1
), p.
012001
. 10.1088/0964-1726/20/1/012001
11.
Kim
,
H.-J.
,
Song
,
S.-H.
, and
Ahn
,
S.-H.
,
2012
, “
A Turtle-Like Swimming Robot Using a Smart Soft Composite (SSC) Structure
,”
Smart Mater. Struct.
,
22
(
1
), p.
014007
. 10.1088/0964-1726/22/1/014007
12.
Song
,
S.-H.
,
Lee
,
J.-Y.
,
Rodrigue
,
H.
,
Choi
,
I.-S.
,
Kang
,
Y. J.
, and
Ahn
,
S.-H.
,
2016
, “
35 Hz Shape Memory Alloy Actuator With Bending-Twisting Mode
,”
Sci. Rep.
,
6
, p.
21118
. 10.1038/srep21118
13.
Wang
,
Z.
,
Hang
,
G.
,
Wang
,
Y.
,
Li
,
J.
, and
Du
,
W.
,
2008
, “
Embedded SMA Wire Actuated Biomimetic Fin: A Module for Biomimetic Underwater Propulsion
,”
Smart Mater. Struct.
,
17
(
2
), p.
025039
. 10.1088/0964-1726/17/2/025039
14.
Kim
,
K. J.
, and
Shahinpoor
,
M.
,
2002
, “
A Novel Method of Manufacturing Three-Dimensional Ionic Polymer–Metal Composites (IPMCS) Biomimetic Sensors, Actuators and Artificial Muscles
,”
Polymer
,
43
(
3
), pp.
797
802
. 10.1016/S0032-3861(01)00648-6
15.
Jo
,
C.
,
Pugal
,
D.
,
Oh
,
I.-K.
,
Kim
,
K. J.
, and
Asaka
,
K.
,
2013
, “
Recent Advances in Ionic Polymer–Metal Composite Actuators and Their Modeling and Applications
,”
Prog. Polym. Sci.
,
38
(
7
), pp.
1037
1066
. 10.1016/j.progpolymsci.2013.04.003
16.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Pei
,
Q.
, and
Joseph
,
J.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp.
836
839
. 10.1126/science.287.5454.836
17.
Shian
,
S.
,
Bertoldi
,
K.
, and
Clarke
,
D. R.
,
2015
, “
Dielectric Elastomer Based “Grippers” for Soft Robotics
,”
Adv. Mater.
,
27
(
43
), pp.
6814
6819
. 10.1002/adma.201503078
18.
Li
,
T.
,
Li
,
G.
,
Liang
,
Y.
,
Cheng
,
T.
,
Dai
,
J.
,
Yang
,
X.
,
Liu
,
B.
,
Zeng
,
Z.
,
Huang
,
Z.
, and
Luo
,
Y.
,
2017
, “
Fast-Moving Soft Electronic Fish
,”
Sci. Adv.
,
3
(
4
), p.
e1602045
. 10.1126/sciadv.1602045
19.
Barbarino
,
S.
,
Flores
,
E. S.
,
Ajaj
,
R. M.
,
Dayyani
,
I.
, and
Friswell
,
M. I.
,
2014
, “
A Review on Shape Memory Alloys With Applications to Morphing Aircraft
,”
Smart Mater. Struct.
,
23
(
6
), p.
063001
. 10.1088/0964-1726/23/6/063001
20.
Rodrigue
,
H.
,
Wang
,
W.
,
Bhandari
,
B.
,
Han
,
M.-W.
, and
Ahn
,
S.-H.
,
2015
, “
SMA-Based Smart Soft Composite Structure Capable of Multiple Modes of Actuation
,”
Compos. Part B Eng.
,
82
, pp.
152
158
. 10.1016/j.compositesb.2015.08.020
21.
Brinson
,
L.
, and
Huang
,
M.
,
1996
, “
Simplifications and Comparisons of Shape Memory Alloy Constitutive Models
,”
J. Intell. Mater. Syst. Struct.
,
7
(
1
), pp.
108
114
. 10.1177/1045389X9600700112
22.
Liang
,
C.
, and
Rogers
,
C. A.
,
1997
, “
One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials
,”
J. Intell. Mater. Syst. Struct.
,
8
(
4
), pp.
285
302
. 10.1177/1045389X9700800402
23.
Li
,
L.
,
Li
,
Q.
, and
Zhang
,
F.
,
2011
, “
One-Dimensional Constitutive Model of Shape Memory Alloy With an Empirical Kinetics Equation
,”
J. Metall.
,
2011
, pp.
1
14
.
24.
Zotov
,
N.
,
Marzynkevitsch
,
V.
, and
Mittemeijer
,
E. J.
,
2014
, “
Evaluation of Kinetic Equations Describing the Martensite–Austenite Phase Transformation in Niti Shape Memory Alloys
,”
J. Alloys. Compd.
,
616
, pp.
385
393
. 10.1016/j.jallcom.2014.07.148
25.
Prahlad
,
H.
, and
Chopra
,
I.
,
2001
, “
Comparative Evaluation of Shape Memory Alloy Constitutive Models With Experimental Data
,”
J. Intell. Mater. Syst. Struct.
,
12
(
6
), pp.
383
395
. 10.1106/104538902022599
26.
Ivshin
,
Y.
, and
Pence
,
T. J.
,
1994
, “
A Thermomechanical Model for a One Variant Shape Memory Material
,”
J. Intell. Mater. Syst. Struct.
,
5
(
4
), pp.
455
473
. 10.1177/1045389X9400500402
27.
Tanaka
,
K.
, and
Nagaki
,
S.
,
1982
, “
A Thermomechanical Description of Materials With Internal Variables in the Process of Phase Transitions
,”
Ingenieur-Archiv
,
51
(
5
), pp.
287
299
. 10.1007/BF00536655
28.
Ikuta
,
K.
,
1990
, “
Micro/Miniature Shape Memory Alloy Actuator
,”
IEEE International Conference on Robotics and Automation
,
May 13–18
,
Cincinnati, OH
, pp.
2156
2161
.
29.
Nespoli
,
A.
,
Besseghini
,
S.
,
Pittaccio
,
S.
,
Villa
,
E.
, and
Viscuso
,
S.
,
2010
, “
The High Potential of Shape Memory Alloys in Developing Miniature Mechanical Devices: A Review on Shape Memory Alloy Mini-Actuators
,”
Sens. Actuators, A.
,
158
(
1
), pp.
149
160
. 10.1016/j.sna.2009.12.020
30.
Christensen
,
D. L.
,
Hawkes
,
E. W.
,
Suresh
,
S. A.
,
Ladenheim
,
K.
, and
Cutkosky
,
M. R.
,
2015
, “
μTugs: Enabling Microrobots to Deliver Macro Forces With Controllable Adhesives
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
May 26–30
,
Seattle, WA
, pp.
4048
4055
.
31.
Lee
,
H.-T.
,
Kim
,
M.-S.
,
Lee
,
G.-Y.
,
Kim
,
C.-S.
, and
Ahn
,
S.-H.
,
2018
, “
Shape Memory Alloy (SMA)-Based Microscale Actuators With 60% Deformation Rate and 1.6 KHz Actuation Speed
,”
Small
,
14
(
23
), p.
1801023
. 10.1002/smll.201801023
32.
Balachandran
,
B.
, and
Magrab
,
E. B.
,
2008
,
Vibrations
,
Cengage Learning
,
Toronto, ON
.
33.
Tam
,
D.
,
Ruan
,
S.
,
Gao
,
P.
,
Yu
,
T.
, and
Sparks
,
E.
,
2012
,
Advances in Military Textiles and Personal Equipment (Woodhead Publishing Series in Textiles)
,
Woodhead Publishing
,
Cambridge, UK
, pp.
213
237
.
You do not currently have access to this content.