Abstract

Despite widespread use of an aft-fuselage-mounted twin-engine aircraft in the business jet industry, a thorough investigation into the vibro-acoustic properties of this aircraft type has yet to be undertaken. Additionally, the effect of bulkhead pressurization on the vibro-acoustic properties of this aircraft fuselage has yet to be investigated in isolation. This work investigates the effect of bulkhead pressurization on two different designs of an aft-fuselage-mounted twin-engine aircraft: a single and a double bulkhead designs. A modal analysis, a harmonic frequency response analysis, and an acoustic response analysis were performed. A split bulkhead pressurization methodology was introduced as a means of improving structural performance without impacting passenger comfort levels in a double bulkhead aircraft. Modal coupling between components was seen to be the primary cause of increased cabin noise, peaking above 80 Hz. The bulkhead frequency response was highly dependent upon bulkhead pressurization, as the modal participation factors were significantly impacted by bulkhead pressurization. Therefore, the importance of understanding all bulkhead natural frequencies was highlighted, as the response changed as a function of bulkhead pressurization. Bulkhead resonance conditions generated a tone in the acoustic frequency response inside the passenger cabin, highlighting the importance of this component to passenger comfort levels.

References

1.
Jha
,
S.
, and
Catherines
,
J.
,
1976
, “
Sources and Characteristics of Interior Noise in General Aviation Aircraft
,”
J. Acoust. Soc. Am.
,
59
(
S1
), pp.
S64
S64
. 10.1121/1.2002817
2.
Jha
,
S.
, and
Catherines
,
J.
,
1978
, “
Interior Noise Studies for General Aviation Types of Aircraft, Part I: Field Studies
,”
J. Sound Vib.
,
58
(
3
), pp.
375
390
. 10.1016/S0022-460X(78)80045-5
3.
Jha
,
S.
, and
Catherines
,
J.
,
1978
, “
Interior Noise Studies for General Aviation Types of Aircraft, Part II: Laboratory Studies
,”
J. Sound Vib.
,
58
(
3
), pp.
391
406
. 10.1016/S0022-460X(78)80046-7
4.
Unruh
,
J. F.
,
Scheidt
,
D. C.
, and
Pomerening
,
D. J.
,
1979
, “
Engine-Induced Structural-Borne Noise in a General Aviation Aircraft
.” NASA-CR-159099.
5.
Unruh
,
J.
, and
Dobosz
,
S.
,
1988
, “
Fuselage Structural-Acoustic Modeling for Structure-Borne Interior Noise Transmission
,”
J. Vib. Acoust. Stress Reliab. Des.
,
110
(
2
), pp.
226
233
. 10.1115/1.3269503
6.
Snyder
,
S.
, and
Hansen
,
C.
,
1994
, “
The Design of Systems to Control Actively Periodic Sound Transmission Into Enclosed Spaces, Part II: Mechanisms and Trends
,”
J. Sound Vib.
,
170
(
4
), pp.
451
472
. 10.1006/jsvi.1994.1078
7.
Unruh
,
J. F.
,
1989
, “
Aircraft Propeller Induced Structure-Borne Noise
.” NASA-CR-4255.
8.
Wilby
,
J. F.
,
1996
, “
Aircraft Interior Noise
,”
J. Sound Vib.
,
190
(
3
), pp.
545
564
. 10.1006/jsvi.1996.0078
9.
Wilby
,
J. F.
, and
Scharton
,
T.
,
1973
, “
Acoustic Transmission Through a Fuselage Sidewall
.” NASA-CR-132602.
10.
Wilby
,
J. F.
,
1982
,“
Interior Noise of a General Aviation Aircraft
,” SAE Technical Paper.
11.
Mixson
,
J. S.
, and
Wilby
,
J. F.
,
1991
, “
Interior Noise
.” Report 19920005567.
12.
Richards
,
L.
,
1980
, “On the Psychology of Passenger Comfort,”
Human Factors in Transport Research
,
D. J.
Oborne
and
A.
Levis
, eds., Vol.
2
,
Academic Press
,
London
, pp.
15
23
.
13.
Richards
,
L. G.
, and
Jacobson
,
I. D.
,
1975
, “
Ride Quality Evaluation 1. Questionnaire Studies of Airline Passenger Comfort
,”
Ergonomics
,
18
(
2
), pp.
129
150
. 10.1080/00140137508931447
14.
Richards
,
L. G.
, and
Jacobson
,
I. D.
,
1977
, “
Ride Quality Assessment. III: Questionnaire Results of a Second Flight Programme
,”
Ergonomics
,
20
(
5
), pp.
499
519
. 10.1080/00140137708931659
15.
Getline
,
G.
,
1976
, “
Low-Frequency Noise Reduction of Lightweight Airframe Structures
.” NASA-CR-145104.
16.
Sun
,
Z.
,
Sun
,
J.
,
Wang
,
C.
, and
Dai
,
Y.
,
1996
, “
Dynamic Vibration Absorbers Used for Increasing the Noise Transmission Loss of Aircraft Panels
,”
Appl. Acoust.
,
48
(
4
), pp.
311
321
. 10.1016/0003-682X(96)81493-9
17.
Nash
,
G.
,
2004
, “
Utilizing Distributed Vibration Absorbers to Reduce Noise Transmission Through the Windshield of a Cessna 150
,” Ph.D. thesis,
Virginia Tech
,
Blacksburg, VA
.
18.
Fuller
,
C.
,
Maillard
,
J.
,
Mercadal
,
M.
, and
Von Flotow
,
A.
,
1997
, “
Control of Aircraft Interior Noise Using Globally Detuned Vibration Absorbers
,”
J. Sound Vib.
,
203
(
5
), pp.
745
761
. 10.1006/jsvi.1996.0867
19.
Romeu
,
J.
,
Palacios
,
J. I.
,
Balastegui
,
A.
, and
Pamies
,
T.
,
2015
, “
Optimization of the Active Control of Turboprop Cabin Noise
,”
J. Aircr.
,
52
(
5
), pp.
1386
1393
. 10.2514/1.C032431
20.
Elliot
,
S.
,
Nelson
,
P.
,
Stothers
,
I.
, and
Boucher
,
C.
,
1990
, “
In-Flight Experiments on the Active Control of Propeller-Induced Cabin Noise
,”
J. Sound Vib.
,
140
(
2
), pp.
219
238
. 10.1016/0022-460X(90)90525-5
21.
Jones
,
J.
, and
Fuller
,
C.
,
1990
, “
Active Control of Structurally-Coupled Sound Fields in Elastic Cylinders by Vibrational Force Inputs
,”
Int. J. Anal. Exp. Modal Anal.
,
5
(
3
), pp.
123
140
.
22.
Houston
,
B. H.
,
Bucaro
,
J.
, and
Photiadis
,
D. M.
,
1995
, “
Broadband Acoustic Scattering From a Ribbed Shell
,”
J. Acoust. Soc. Am.
,
98
(
5
), pp.
2851
2853
. 10.1121/1.413186
23.
Tran-Van-Nhieu
,
M.
,
2001
, “
Scattering From a Ribbed Finite Cylindrical Shell
,”
J. Acoust. Soc. Am.
,
110
(
6
), pp.
2858
2866
. 10.1121/1.1413997
24.
Liétard
,
R.
,
Décultot
,
D.
,
Maze
,
G.
, and
Tran-Van-Nhieu
,
M.
,
2005
, “
Acoustic Scattering From a Finite Cylindrical Shell With Evenly Spaced Stiffeners: Experimental Investigation
,”
J. Acoust. Soc. Am.
,
118
(
4
), pp.
2142
2146
. 10.1121/1.2011148
25.
Pan
,
A.
,
Fan
,
J.
, and
Wang
,
B.
,
2013
, “
Acoustic Scattering From a Double Periodically Bulkheaded and Ribbed Finite Cylindrical Shell
,”
J. Acoust. Soc. Am.
,
134
(
5
), pp.
3452
3463
. 10.1121/1.4821212
26.
Herdic
,
P. C.
,
Houston
,
B. H.
,
Marcus
,
M. H.
,
Williams
,
E. G.
, and
Baz
,
A. M.
,
2005
, “
The Vibro-Acoustic Response and Analysis of a Full-Scale Aircraft Fuselage Section for Interior Noise Reduction
,”
J. Acoust. Soc. Am.
,
117
(
6
), pp.
3667
3678
. 10.1121/1.1887125
27.
Dammak
,
K.
,
Koubaa
,
S.
,
El Hami
,
A.
,
Walha
,
L.
, and
Haddar
,
M.
,
2019
, “
Numerical Modelling of Vibro-Acoustic Problem in Presence of Uncertainty: Application to a Vehicle Cabin
,”
Appl. Acoust.
,
144
(
1
), pp.
113
123
. 10.1016/j.apacoust.2017.06.001
28.
Li
,
E.
,
He
,
Z.
,
Jiang
,
Y.
, and
Li
,
B.
,
2016
, “
3d Mass-Redistributed Finite Element Method in Structural-Acoustic Interaction Problems
,”
Acta Mech.
,
227
(
3
), pp.
857
879
. 10.1007/s00707-015-1496-y
29.
Krylov
,
V. V.
,
Georgiev
,
V. B.
, and
Jensen
,
K.
,
2017
, “
Numerical and Experimental Modelling of Structure-Borne Aircraft Interior Noise
,”
Noise Theory Pract.
,
3
(
2
), pp.
2
16
.
30.
Pan
,
J.
, and
Bies
,
D. A.
,
1990
, “
The Effect of Fluid-Structural Coupling on Sound Waves in an Enclosure–Theoretical Part
,”
J. Acoust. Soc. Am.
,
87
(
2
), pp.
691
707
. 10.1121/1.398939
31.
Lalor
,
N.
, and
Priebsch
,
H.-H.
,
2007
, “
The Prediction of Low- and Mid-Frequency Internal Road Vehicle Noise: A Literature Survey
,”
Proc. Inst. Mech. Eng., Part D: J. Automob. Eng.
,
221
(
3
), pp.
245
269
. 10.1243/09544070JAUTO199
32.
Pope
,
L.
,
Rennison
,
D.
,
Willis
,
C.
, and
Mayes
,
W.
,
1982
, “
Development and Validation of Preliminary Analytical Models for Aircraft Interior Noise Prediction
,”
J. Sound Vib.
,
82
(
4
), pp.
541
575
. 10.1016/0022-460X(82)90407-2
33.
Pope
,
L.
,
Wilby
,
E.
, and
Wilby
,
J.
,
1987
, “
Propeller Aircraft Interior Noise Model, Part I: Analytical Model
,”
J. Sound Vib.
,
118
(
3
), pp.
449
467
. 10.1016/0022-460X(87)90364-6
34.
Pope
,
L.
,
Willis
,
C.
, and
Mayes
,
W.
,
1987
, “
Propeller Aircraft Interior Noise Model, Part II: Scale-Model and Flight-Test Comparisons
,”
J. Sound Vib.
,
118
(
3
), pp.
469
493
. 10.1016/0022-460X(87)90365-8
35.
Nefske
,
D.
,
Wolf
,
J.
, and
Howell
,
L.
,
1982
, “
Structural-Acoustic Finite Element Analysis of the Automobile Passenger Compartment: A Review of Current Practice
,”
J. Sound Vib.
,
80
(
2
), pp.
247
266
. 10.1016/0022-460X(82)90194-8
36.
Wong
,
A. A.
,
Abu
,
A.
,
Mansor
,
S.
,
Rudin
,
N. F. M. N.
,
Johar
,
A. H.
, and
Yatim
,
N. H. M.
,
2017
, “
Effect of Different Automobile Cabin Geometry to Acoustic Cavity Mode Analysis
,”
Adv. Sci. Lett.
,
23
(
5
), pp.
3824
3828
. 10.1166/asl.2017.8345
37.
Cordioli
,
J. A.
,
Gerges
,
S. N.
,
Pererira
,
A. K.
,
Carmo
,
M.
, and
Grandi
,
C.
,
2004
, “
Vibro-Acoustic Modeling of Aircrafts Using Statistical Energy Analysis
,” Technical Report, SAE Technical Paper.
38.
Montgomery
,
J.
,
2000
, “
Structural-Acoustic Testing and FEM/BEM Modeling of a 767 Fuselage Section
,”
6th Aeroacoustics Conference and Exhibit
,
Lahaina, HI
,
June 12–14
, p.
2056
.
39.
Comrie
,
J. L.
, and
Korde
,
U. A.
,
2012
, “
Vibroacoustic Studies on Sounding Rocket Bulkheads
,”
Proceedings SPIE 8341, Active and Passive Smart Structures and Integrated Systems 2012
,
San Diego, CA
,
Mar. 27
, International Society for Optics and Photonics, p.
834117
.
40.
Simpson
,
M.
, and
Tran
,
B.
,
1991
, “
Analysis of Interior Noise Ground and Flight Test Data for Advanced Turboprop Aircraft Applications
.” NASA-CR-187558.
41.
Warwick
,
B. T.
,
Kim
,
I. Y.
, and
Mechefske
,
C. K.
,
2019
, “
Substructuring Verification of a Rear Fuselage Mounted Twin-Engine Aircraft
,”
Aerosp. Sci. Technol.
,
93
, p.
105305
. 10.1016/j.ast.2019.105305
42.
Altair
,
2018
, “
Optistruct User Guide 14.0.230
.”
43.
Howard
,
C.
, and
Cazzolato
,
B.
,
2014
,
Acoustic Analyses Using MATLAB and ANSYS
,
CRC Press
,
Boca Raton, FL
.
44.
Kaltenbacher
,
M.
,
2018
,
Computational Acoustics
,
Springer
,
New York
.
45.
Yadav
,
U.
, and
Naganoor
,
P.
,
2010
, “
Acoustic Cavity Modelling Using Altair Auto Mesh Tool & Correlating With the Manual Mesh Model
,”
Altair Technology Conference
,
Novi, MI
,
Apr. 27–29
, pp.
1
5
.
46.
De Oliveira
,
L.
,
Da Silva
,
M. M.
,
Sas
,
P.
,
Van Brussel
,
H.
, and
Desmet
,
W.
,
2008
, “
Concurrent Mechatronic Design Approach for Active Control of Cavity Noise
,”
J. Sound Vib.
,
314
(
3–5
), pp.
507
525
. 10.1016/j.jsv.2008.01.009
47.
Dhabe
,
S.
,
2014
, “
A Study of Passenger Car Acoustic Cavity Boom Simulation Methods
.” M.Sc. thesis,
Michigan Technological University
.
48.
Everest
,
F. A.
,
2001
, “
Master Handbook of Acoustics
,”
J. Acous. Soc. Am.
,
110
, p.
1714
. 10.1121/1.1398048
49.
Ginsberg
,
J. H.
,
2018
,
Acoustics: A Textbook for Engineers and Physicists
,
Springer
,
New York
.
50.
Lyon
,
R. H.
,
DeJong
,
R. G.
, and
Heckl
,
M.
,
1995
, “
Theory and Application of Statistical Energy Analysis
,”
J. Acous. Soc. Am.
,
98
, p.
3021
.10.1121/1.413875
51.
Berthaut
,
J.
,
Ichchou
,
M.
, and
Jezequel
,
L.
,
2003
, “
Piano Soundboard: Structural Behavior, Numerical and Experimental Study in the Modal Range
,”
Appl. Acoust.
,
64
(
11
), pp.
1113
1136
. 10.1016/S0003-682X(03)00065-3
52.
Ege
,
K.
,
Boutillon
,
X.
, and
David
,
B.
,
2009
, “
High-Resolution Modal Analysis
,”
J. Sound Vib.
,
325
(
4–5
), pp.
852
869
. 10.1016/j.jsv.2009.04.019
53.
Ham
,
S.
, and
Bathe
,
K.-J.
,
2012
, “
A Finite Element Method Enriched for Wave Propagation Problems
,”
Comput. Struct.
,
94
(
1
), pp.
1
12
. 10.1016/j.compstruc.2012.01.001
54.
Kohno
,
H.
,
Bathe
,
K.-J.
, and
Wright
,
J. C.
,
2010
, “
A Finite Element Procedure for Multiscale Wave Equations With Application to Plasma Waves
,”
Comput. Struct.
,
88
(
1–2
), pp.
87
94
. 10.1016/j.compstruc.2009.05.001
55.
Chamberlain
,
D. A.
, and
Mechefske
,
C. K.
,
2017
, “
Experimental Modal Analysis of a Half-Scale Model Twin-Engine Aircraft Rear Fuselage Engine Mount Support Frame
,”
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
, pp.
1
12
.
56.
Warwick
,
B. T.
,
Mechefske
,
C. K.
, and
Kim
,
I. Y.
,
2017
, “
Computational Modal Analysis of a Twin-Engine Rear Fuselage Mounted Aircraft Support Frame
,”
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
, pp.
1
9
.
57.
Warwick
,
B. T.
,
Mechefske
,
C. K.
, and
Kim
,
I. Y.
,
2018
, “
Effect of Stiffener Configuration on Bulkhead Modal Parameters
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
, pp.
1
10
.
58.
Antoni
,
J.
,
Griffaton
,
J.
,
André
,
H.
,
Avendaño-Valencia
,
L. D.
,
Bonnardot
,
F.
,
Cardona-Morales
,
O.
,
Castellanos-Dominguez
,
G.
,
Daga
,
A. P.
,
Leclère
,
Q.
,
Vicuña
,
C. M.
,
Acuña
,
D. Q.
,
Ompusunggu
,
A. P.
, and
Sierra-Alonso
,
E. F.
,
2017
, “
Feedback on the Surveillance 8 Challenge: Vibration-Based Diagnosis of a Safran Aircraft Engine
,”
Mech. Syst. Signal Process.
,
97
(
1
), pp.
112
144
. 10.1016/j.ymssp.2017.01.037
59.
Altair
,
2018
, “
Hypermesh User Guide 14.0.230
.”
You do not currently have access to this content.