Abstract

The objective of this study is to develop a novel methodology to assess the energy flow between a nonlinear energy sink (NES) and the primary system it is attached to in terms of energy orientation, which is directly related to the sign of the power present on the primary system. To extend the work done in previous studies, which have focused primarily on the analytical treatment, characterization, and performance evaluation of NES as passive nonlinear dampers for structures under different types of excitations, this study incorporates a methodology for determining whether energy is entering or leaving a primary oscillator when interacting with an NES, by means of considering the power flow of the primary oscillator. Several current measures for evaluating the effectiveness of the NES at extracting and dissipating energy irreversibly are considered through numerical simulations of systems with different damping cases of the NES. Each case provides a different dissipation scenario in the combined system, which is subjected to different types of base excitation signals such as impulse and seismic records. The methodology is further validated experimentally using a two degrees-of-freedom system with an NES attached to the second mass. Comparisons of the modeled responses versus the measured responses are provided for several physical damping realization scenarios in the NES.

References

1.
Kerschen
,
G.
,
Kowtko
,
J. J.
,
Mcfarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2007
, “
Theoretical and Experimental Study of Multimodal Targeted Energy Transfer in a System of Coupled Oscillators
,”
Nonlinear Dynamics
,
47
(
1–3
), pp.
285
309
.
2.
Kerschen
,
G.
,
Mcfarland
,
D. M.
,
Kowtko
,
J. J.
,
Lee
,
Y. S.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2007
, “
Experimental Demonstration of Transient Resonance Capture in a System of Two Coupled Oscillators With Essential Stiffness Nonlinearity
,”
J. Sound Vib.
,
299
(
4–5
), pp.
822
838
. 10.1016/j.jsv.2006.07.029
3.
Kerschen
,
G.
,
Lee
,
Y. S.
,
Vakakis
,
A. F.
,
McFarland
,
D. M.
, and
Bergman
,
L. A.
,
2005
, “
Irreversible Passive Energy Transfer in Coupled Oscillators With Essential Nonlinearity
,”
SIAM J. Appl. Math.
,
66
(
2
), pp.
648
679
. 10.1137/040613706
4.
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2004
, “
Experimental Study of Nonlinear Energy Pumping
,”
XXI International Congress of Theoretical and Applied Mechanics
,
Warsaw, Poland
,
Aug. 15–21
, pp.
1
2
.
5.
Mcfarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2005
, “
Experimental Study of Non-Linear Energy Pumping Occurring at a Single Fast Frequency
,”
Int. J. Non-Linear Mech.
,
40
(
6
), pp.
891
899
. 10.1016/j.ijnonlinmec.2004.11.001
6.
Vakakis
,
A. F.
, and
Gendelman
,
O.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators: Part II—Resonance Capture
,”
ASME J. Appl. Mech.
,
68
(
1
), p.
42
. 10.1115/1.1345525
7.
Vakakis
,
A. F.
,
Gendelman
,
O.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Kerschen
,
G.
, and
Lee
,
Y. S.
,
2008
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
,
Springer Science & Business Media
,
Berlin
.
8.
Gendelman
,
O. V.
,
2001
, “
Transition of Energy to a Nonlinear Localized Mode in a Highly Asymmetric System of Two Oscillators
,”
Nonlinear Dyn.
,
25
(
1–3
), pp.
237
253
. 10.1023/A:1012967003477
9.
McFarland
,
D. M.
,
Kerschen
,
G.
,
Kowtko
,
J. J.
,
Lee
,
Y. S.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2005
, “
Experimental Investigation of Targeted Energy Transfers in Strongly and Nonlinearly Coupled Oscillators
,”
J. Acoust. Soc. Am.
,
118
(
2
), pp.
791
799
. 10.1121/1.1944649
10.
AL-Shudeifat
,
M. A.
,
2017
, “
Nonlinear Energy Sinks With Nontraditional Kinds of Nonlinear Restoring Forces
,”
ASME J. Vib. Acoust.
,
139
(
2
), p.
024503
. 10.1115/1.4035479
11.
Bernard
,
B. P.
, and
Mann
,
B. P.
,
2018
, “
Increasing Viability of Nonlinear Energy Harvesters by Adding an Excited Dynamic Magnifier
,”
J. Intell. Mater. Syst. Struct.
,
29
(
6
), pp.
1196
1205
. 10.1177/1045389X17730924
12.
Kluger
,
J. M.
,
Sapsis
,
T. P.
, and
Slocum
,
A. H.
,
2015
, “
Robust Energy Harvesting From Walking Vibrations by Means of Nonlinear Cantilever Beams
,”
J. Sound Vib.
,
341
(
4
), pp.
174
194
. 10.1016/j.jsv.2014.11.035
13.
Zhang
,
Y.
,
Tang
,
L.
, and
Liu
,
K.
,
2017
, “
Piezoelectric Energy Harvesting With a Nonlinear Energy Sink
,”
J. Intell. Mater. Syst. Struct.
,
28
(
3
), pp.
307
322
. 10.1177/1045389X16642301
14.
Lamarque
,
C.-H.
,
Gendelman
,
O. V.
,
Ture Savadkoohi
,
A.
, and
Etcheverria
,
E.
,
2011
, “
Targeted Energy Transfer in Mechanical Systems by Means of Non-Smooth Nonlinear Energy Sink
,”
Acta Mech.
,
221
(
1–2
), pp.
175
200
. 10.1007/s00707-011-0492-0
15.
Ramsey
,
J.
, and
Wierschem
,
N.
,
2017
, “
Passive Control of the Vibration of Flooring Systems Using a Gravity Compensated Non-Linear Energy Sink
,”
13th International Workshop on Advanced Smart Materials and Smart Structures Technology
,
The University of Tokyo, Tokyo, Japan
,
July 22–23
, p.
8
.
16.
Al-Shudeifat
,
M. A.
,
2014
, “
Highly Efficient Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
76
(
4
), pp.
1905
1920
. 10.1007/s11071-014-1256-x
17.
Nucera
,
F.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
,
Vakakis
,
A. F.
, and
Lo Iacono
,
F.
,
2010
, “
Application of Broadband Nonlinear Targeted Energy Transfers for Seismic Mitigation of a Shear Frame: Computational Results
,”
J. Sound Vib.
,
329
(
15
), pp.
2973
2994
. 10.1016/j.jsv.2010.01.020
18.
Gendelman
,
O.
,
Sapsis
,
T.
,
Vakakis
,
A.
, and
Bergman
,
L.
,
2011
, “
Enhanced Passive Targeted Energy Transfer in Strongly Nonlinear Mechanical Oscillators
,”
J. Sound Vib.
,
330
(
1
), pp.
1
8
. 10.1016/j.jsv.2010.08.014
19.
Lu
,
X.
,
Liu
,
Z.
, and
Lu
,
Z.
,
2017
, “
Optimization Design and Experimental Verification of Track Nonlinear Energy Sink for Vibration Control Under Seismic Excitation
,”
Struct. Control Health Monit.
,
24
(
12
), p.
e2033
. 10.1002/stc.v24.12
20.
Goyal
,
S.
, and
Whalen
,
T. M.
,
2005
, “
Design and Application of a Nonlinear Energy Sink to Mitigate Vibrations of an Air Spring-Supported Slab
,”
ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Long Beach, CA
,
Sept. 24–28
, pp.
2331
2339
.
21.
Yang
,
K.
,
Zhang
,
Y.-W.
,
Ding
,
H.
,
Yang
,
T.-Z.
,
Li
,
Y.
, and
Chen
,
L.-Q.
,
2017
, “
Nonlinear Energy Sink for Whole-Spacecraft Vibration Reduction
,”
ASME J. Vib. Acoust.
,
139
(
2
), p.
021011
. 10.1115/1.4035377
22.
Wierschem
,
N. E.
,
2014
, “
Targeted Energy Transfer Using Nonlinear Energy Sinks for the Attenuation of Transient Loads on Building Structures
,” Ph.D. thesis, University of Illinois at Urbana-Champaign, Champaign, IL
23.
Kerschen
,
G.
,
Worden
,
K.
,
Vakakis
,
A. F.
, and
Golinval
,
J.-C.
,
2006
, “
Past, Present and Future of Nonlinear System Identification in Structural Dynamics
,”
Mech. Syst. Signal Process.
,
20
(
3
), pp.
505
592
. 10.1016/j.ymssp.2005.04.008
24.
Vakakis
,
A. F.
,
McFarland
,
D. M.
,
Bergman
,
L.
,
Manevitch
,
L. I.
, and
Gendelman
,
O.
,
2004
, “
Isolated Resonance Captures and Resonance Capture Cascades Leading to Single- or Multi-Mode Passive Energy Pumping in Damped Coupled Oscillators
,”
ASME J. Vib. Acoust.
,
126
(
2
), p.
235
. 10.1115/1.1687397
25.
Tang
,
L.
, and
Yang
,
Y.
,
2012
, “
A Multiple-Degree-of-Freedom Piezoelectric Energy Harvesting Model
,”
J. Intell. Mater. Syst. Struct.
,
23
(
14
), pp.
1631
1647
. 10.1177/1045389X12449920
26.
Starosvetsky
,
Y.
, and
Gendelman
,
O.
,
2010
, “
Interaction of Nonlinear Energy Sink With a Two Degrees of Freedom Linear System: Internal Resonance
,”
J. Sound Vib.
,
329
(
10
), pp.
1836
1852
. 10.1016/j.jsv.2009.11.025
27.
Tripathi
,
A.
,
Grover
,
P.
, and
Kalmár-Nagy
,
T.
,
2017
, “
On Optimal Performance of Nonlinear Energy Sinks in Multiple-Degree-of-Freedom Systems
,”
J. Sound Vib.
,
388
(
1
), pp.
272
297
. 10.1016/j.jsv.2016.10.025
28.
Starosvetsky
,
Y.
, and
Gendelman
,
O. V.
,
2009
, “
Vibration Absorption in Systems With a Nonlinear Energy Sink: Nonlinear Damping
,”
J. Sound Vib.
,
324
(
3–5
), pp.
916
939
. 10.1016/j.jsv.2009.02.052
29.
Tao
,
H.
, and
Gibert
,
J.
,
2019
, “
Periodic Orbits of a Conservative 2-DOF Vibro-Impact System by Piecewise Continuation: Bifurcations and Fractals
,”
Nonlinear Dyn.
,
95
(
4
), pp.
2963
2993
. 10.1007/s11071-018-04734-4
30.
Chopra
,
A. K.
,
2012
,
Dynamics of Structures
, 4th ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
31.
Zahrah
,
T. F.
, and
Hall
,
W. J.
,
1984
, “
Earthquake Energy Absorption in SDOF Structures
,”
J. Struct. Eng.
,
110
(
8
), pp.
1757
1772
. 10.1061/(ASCE)0733-9445(1984)110:8(1757)
32.
Uang
,
C.-M.
, and
Bertero
,
V. V.
,
1990
, “
Evaluation of Seismic Energy in Structures
,”
Earthquake Eng. Struct. Dyn.
,
19
(
1988
), pp.
77
90
. 10.1002/(ISSN)1096-9845
33.
The Mathworks Inc.
,
2018
, matlab.
34.
Kremer
,
D.
, and
Liu
,
K.
,
2014
, “
A Nonlinear Energy Sink With an Energy Harvester: Transient Responses
,”
J. Sound Vib.
,
333
(
20
), pp.
4859
4880
. 10.1016/j.jsv.2014.05.010
35.
Rowell
,
D.
,
2003
,
2.151 Advanced System Dynamics and Control, Chapter 2 notes [pdf]
. https://stuff.mit.edu/afs/athena/course/2/2.151/www/Handouts/EnPwrFlow.pdf
36.
Desalvo
,
R.
,
2007
, “
Passive, Nonlinear, Mechanical Structures for Seismic Attenuation
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
4
), pp.
290
298
. 10.1115/1.2754305
37.
Nucera
,
F.
,
Lo Iacono
,
F.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2008
, “
Application of Broadband Nonlinear Targeted Energy Transfers for Seismic Mitigation of a Shear Frame: Experimental Results
,”
J. Sound Vib.
,
313
, pp.
57
76
. 10.1016/j.jsv.2007.11.018
You do not currently have access to this content.