Different from elastic waves in linear periodic structures, those in phononic crystals (PCs) with nonlinear properties can exhibit more interesting phenomena. Linear dispersion relations cannot accurately predict band-gap variations under finite-amplitude wave motions; creating nonlinear PCs remains challenging and few examples have been studied. Recent studies in the literature mainly focus on discrete chain-like systems; most studies only consider weakly nonlinear regimes and cannot accurately obtain some relations between wave propagation characteristics and general nonlinearities. This paper presents propagation characteristics of longitudinal elastic waves in a thin rod and coupled longitudinal and transverse waves in an Euler–Bernoulli beam using their exact Green–Lagrange strain relations. We derive band structure relations for a periodic rod and beam and predict their nonlinear wave propagation characteristics using the B-spline wavelet on the interval (BSWI) finite element method. Influences of nonlinearities on wave propagation characteristics are discussed. Numerical examples show that the proposed method is more effective for nonlinear static and band structure problems than the traditional finite element method and illustrate that nonlinearities can cause band-gap width and location changes, which is similar to results reported in the literature for discrete systems. The proposed methodology is not restricted to weakly nonlinear systems and can be used to accurately predict wave propagation characteristics of nonlinear structures. This study can provide good support for engineering applications, such as sound and vibration control using tunable band gaps of nonlinear PCs.

References

1.
Joannopoulos
,
J. D.
,
Villeneuve
,
P. R.
, and
Fan
,
S. H.
,
1997
, “
Photonic Crystals
,”
Solid State Commun.
,
102
(
2–3
), pp.
165
173
.
2.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
71
(
13
), pp.
2022
2025
.
3.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040802
.
4.
Wang
,
K.
,
Liu
,
Y.
, and
Yang
,
Q. S.
,
2015
, “
Tuning of Band Structures in Porous Phononic Crystals by Grading Design of Cells
,”
Ultrasonics
,
61
, pp.
25
32
.
5.
Ganesh
,
R.
, and
Gonella
,
S.
,
2015
, “
From Modal Mixing to Tunable Functional Switches in Nonlinear Phononic Crystals
,”
Phys. Rev. Lett.
,
115
(
4
), p.
054302
.
6.
Cauchy
,
A. L.
,
1830
,
Exercises De Mathematiques
,
Mathematics Exercises
,
Paris, France
.
7.
Graff
,
K. F.
,
1991
,
Wave Motion in Elastic Solids
,
Dover Publications
,
Mineola, NY
.
8.
Thurston
,
R. N.
,
1984
,
Waves in Solids, Mechanics of Solids
, Vol.
4
,
Springer-Verlag
,
Berlin
, pp.
109
308
.
9.
Nouri
,
M. B.
, and
Moradi
,
M.
,
2016
, “
Presentation and Investigation of a New Two Dimensional Heterostructure Phononic Crystal to Obtain Extended Band Gap
,”
Physica B
,
489
, pp.
28
32
.
10.
Anufriev
,
R.
, and
Nomura
,
M.
,
2016
, “
Reduction of Thermal Conductance by Coherent Phonon Scattering in Two-Dimensional Phononic Crystals of Different Lattice Types
,”
Phys. Rev. B
,
93
(
4
), p.
045410
.
11.
Vakakis
,
A. F.
, and
King
,
M. E.
,
1995
, “
Nonlinear Wave Transmission in a Monocoupled Elastic Periodic System
,”
J. Acoust. Soc. Am.
,
98
(
3
), pp.
1534
1546
.
12.
Narisetti
,
R. K.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
, 2010, “
A Perturbation Approach for Predicting Wave Propagation in One-Dimensional Nonlinear Periodic Structures
,”
ASME J. Vib. Acoust.
,
132
(3), p.
031001
.
13.
Narisetti
,
R. K.
,
Ruzzene
,
M.
, and
Leamy
,
M. J.
,
2011
, “
A Perturbation Approach for Analyzing Dispersion and Group Velocities in Two-Dimensional Nonlinear Periodic Lattices
,”
ASME J. Vib. Acoust.
,
133
(
6
), p.
061020
.
14.
Sreelatha
,
K. S.
, and
Joseph
,
K. B.
,
2000
, “
Wave Propagation Through a 2D Lattice
,”
Chaos Solitons Fractals
,
11
(
5
), pp.
711
719
.
15.
Lazarov
,
B. S.
, and
Jensen
,
J. S.
,
2007
, “
Low-Frequency Band Gaps in Chains With Attached Non-Linear Oscillators
,”
Int. J. Non-Linear Mech.
,
42
(
10
), pp.
1186
1193
.
16.
Duan
,
W. S.
,
Shi
,
Y.
,
Zhang
,
L.
,
Lin
,
M. M.
, and
Lv
,
K.
,
2005
, “
Coupled Nonlinear Waves in Two-Dimensional Lattice
,”
Chaos Solitons Fractals
,
23
(
3
), pp.
957
962
.
17.
Feng
,
B.
, and
Kawahara
,
T.
,
2007
, “
Discrete Breathers in Two-Dimensional Nonlinear Lattices
,”
Wave Motion
,
45
(
1–2
), pp.
68
82
.
18.
Narisetti
,
R. K.
,
Ruzzene
,
M.
, and
Leamy
,
M. J.
,
2012
, “
Study of Wave Propagation in Strongly Nonlinear Periodic Lattices Using a Harmonic Balance Approach
,”
Wave Motion
,
49
(
2
), pp.
394
410
.
19.
Spadoni
,
A.
,
Ruzzene
,
M.
,
Gonella
,
S.
, and
Scarpa
,
F.
,
2009
, “
Phononic Properties of Hexagonal Chiral Lattices
,”
Wave Motion
,
46
(
7
), pp.
435
450
.
20.
Manktelow
,
K.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2013
, “
Comparison of Asymptotic and Transfer Matrix Approaches for Evaluating Intensity-Dependent Dispersion in Nonlinear Photonic and Phononic Crystals
,”
Wave Motion
,
50
(
3
), pp.
494
508
.
21.
Abedinnasab
,
M. A.
, and
Hussein
,
M. I.
,
2013
, “
Wave Dispersion Under Finite Deformation
,”
Wave Motion
,
50
(
3
), pp.
374
388
.
22.
Khajehtourian
,
R.
, and
Hussein
,
M. I.
,
2014
, “
Dispersion Characteristics of a Nonlinear Elastic Metamaterial
,”
AIP Adv.
,
4
(
12
), p.
124308
.
23.
Packo
,
P.
,
Uhl
,
T.
,
Staszewski
,
W. J.
, and
Leamy
,
M. J.
,
2016
, “
Amplitude-Dependent Lamb Wave Dispersion in Nonlinear Plates
,”
J. Acoust. Soc. Am.
,
140
(
2
), pp.
1319
1331
.
24.
Xiang
,
J. W.
,
Matsumoto
,
T.
,
Wang
,
Y. X.
, and
Jiang
,
Z. S.
,
2013
, “
Detect Damages in Conical Shells Using Curvature Mode Shape and Wavelet Finite Element Method
,”
Int. J. Mech. Sci.
,
66
, pp.
83
93
.
25.
Xiang
,
J. W.
,
Chen
,
X. F.
,
He
,
Y. M.
, and
He
,
Z. J.
,
2006
, “
The Construction of Plane Elastomechanics and Mindlin Plate Elements of B-Spline Wavelet on the Interval
,”
Finite Elem. Anal. Des.
,
42
(
14–15
), pp.
1269
1280
.
26.
Liu
,
M.
,
Xiang
,
J. W.
,
Gao
,
H. F.
,
Jiang
,
Y. Y.
,
Zhou
,
Y. Q.
, and
Li
,
F. P.
,
2014
, “
Research on Band Structure of One-Dimensional Phononic Crystals Based on Wavelet Finite Element Method
,”
Comput. Model. Eng. Sci.
,
97
(
5
), pp.
425
436
.http://www.techscience.com/doi/10.3970/cmes.2014.097.425.pdf
27.
Li
,
J.
, and
Zhang
,
Y.
,
2008
, “
Exact Travelling Wave Solutions in a Nonlinear Elastic Rod Equation
,”
Appl. Math. Comput.
,
202
(
2
), pp.
504
510
.
28.
Goswami
,
J. C.
,
Chen
,
A. K.
, and
Chui
,
C. K.
,
1995
, “
On Solving First-Kind Integral Equations Using Wavelets on a Bounded Interval
,”
IEEE Trans. Antennas Propag.
,
43
(
6
), pp.
614
622
.
29.
Kelley
,
C. T.
,
2003
,
Solving Nonlinear Equations With Newton's Method
,
SIAM
,
Philadelphia, PA
.
30.
Reddy
,
J. N.
,
1997
, “
On Locking-Free Shear Deformable Beam Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
,
149
(
1–4
), pp.
113
132
.
31.
Wiebe
,
R.
, and
Stanciulescu
,
I.
, 2015, “
Inconsistent Stability of Newmark's Method in Structural Dynamics Applications
,”
J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
051006
.
32.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
1961
,
Theory of Elastic Stability
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.