Abstract

This paper presents a novel formulation and exact solution of the frequency response function (FRF) of vibration energy harvesting beam systems by the distributed transfer function method (TFM). The method is applicable for coupled electromechanical systems with nonproportional damping, intermediate constraints, and nonclassical boundary conditions, for which the system transfer functions are either very difficult or cumbersome to obtain using available methods. Such systems may offer new opportunities for optimized designs of energy harvesters via parameter tuning. The proposed formulation is also systematic and amenable to algorithmic numerical coding, allowing the system response and its derivatives to be computed by only simple modifications of the parameters in the system operators for different boundary conditions and the incorporation of feedback control principles. Examples of piezoelectric energy harvesters with nonclassical boundary conditions and intermediate constraints are presented to demonstrate the efficacy of the proposed method and its use as a design tool for vibration energy harvesters via tuning of system parameters. The results can also be used to provide benchmarks for assessing the accuracies of approximate techniques.

References

1.
Amirtharajah
,
R.
,
1999
, “Design of Low Power VLSI Systems Powered by Ambient Mechanical Vibration,”
Ph.D. thesis
, Massachusetts Institute of Technology, Boston, MA.
2.
Cantatore
,
E.
, and
Ouwerkerk
,
M.
,
2006
, “
Energy Scavenging and Power Management in Networks of Autonomous Microsensors
,”
Microelectron. J.
,
37
(
12
), pp.
1584
1590
.
3.
Lee
,
K.-J.
,
Lee
,
H.
,
Kim
,
Y.-S.
,
Lim
,
J.
, and
Han
,
S.-M.
,
2012
, “
Multi-Functional Channel Selective RF Receiver System for Low-Power Sensor Network Applications
,”
Microwave Opt. Technol. Lett.
,
54
(
4
), pp.
847
851
.
4.
Elvin
,
N. G.
,
Elvin
,
A. A.
, and
Spector
,
M.
,
2001
, “
A Self-Powered Mechanical Strain Energy Sensor
,”
Smart Mater. Struct.
,
10
(
2
), pp.
293
299
.
5.
Zhong
,
J.
,
Zhong
,
Q.
,
Hu
,
Q.
,
Wu
,
N.
,
Li
,
W.
,
Wang
,
B.
,
Hu
,
B.
, and
Zhou
,
J.
,
2015
, “
Stretchable Self-Powered Fiber-Based Strain Sensor
,”
Adv. Funct. Mater.
,
25
(
12
), pp.
1798
1803
.
6.
Lefeuvre
,
E.
,
Badel
,
A.
,
Richard
,
C.
,
Petit
,
L.
, and
Guyomar
,
D.
,
2006
, “
A Comparison Between Several Vibration-Powered Piezoelectric Generators for Standalone Systems
,”
Sens. Actuators, A
,
126
(
2
), pp.
405
416
.
7.
Sarkar
,
P.
,
Huang
,
C.
, and
Chakrabartty
,
S.
,
2012
, “
A Self-Powered Static-Strain Sensor Based on Differential Linear Piezo-Floating-Gate Injectors
,”
IEEE International Symposium on Circuits and Systems
(
ISCAS
), Seoul, South Korea, May 20–23, pp.
1167
1170
.
8.
Mitcheson
,
P. D.
,
Yeatman
,
E. M.
,
Rao
,
G. K.
,
Holmes
,
A. S.
, and
Green
,
T. C.
,
2008
, “
Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices
,”
Proc. IEEE
,
96
(
9
), pp.
1457
1486
.
9.
Beeby
,
S. P.
,
Tudor
,
M. J.
, and
White
,
N. M.
,
2006
, “
Energy Harvesting Vibration Sources for Microsystems Applications
,”
Meas. Sci. Technol.
,
17
(
12
), pp.
R175
R195
.
10.
Elvin
,
N. G.
,
Lajnef
,
N.
, and
Elvin
,
A. A.
,
2006
, “
Feasibility of Structural Monitoring With Vibration Powered Sensors
,”
Smart Mater. Struct.
,
15
(
4
), pp.
977
986
.
11.
Jeon
,
Y. B.
,
Sood
,
R.
,
Jeong
,
J.-H.
, and
Kim
,
S.-G.
,
2005
, “
MEMS Power Generator With Transverse Mode Thin Film PZT
,”
Sens. Actuators A
,
122
(
1
), pp.
16
22
.
12.
Kymissis
,
J.
,
Kendall
,
C.
,
Paradiso
,
J.
, and
Gershenfeld
,
N.
,
1998
, “
Parasitic Power Harvesting in Shoes
,”
Second International Symposium on Wearable Computers
(
ISWC
), Pittsburgh, PA, Oct. 19–20, pp.
132
139
.
13.
Lai
,
H.
,
Tan
,
C. A.
, and
Xu
,
Y.
,
2011
, “Dielectric Elastomer Energy Harvesting and Its Application to Human Walking,”
ASME
Paper No. IMECE2011-65973.
14.
Anton
,
S. R.
, and
Sodano
,
H. A.
,
2007
, “
A Review of Power Harvesting Using Piezoelectric Materials (2003-2006)
,”
Smart Mater. Struct.
,
16
(
3
), pp.
R1
R21
.
15.
Kim
,
H. S.
,
Kim
,
J.-H.
, and
Kim
,
J.
,
2011
, “
A Review of Piezoelectric Energy Harvesting Based on Vibration
,”
Int. J. Precis. Eng. Manuf.
,
12
(
6
), pp.
1129
1141
.
16.
duToit
,
N. E.
,
Wardle
,
B. L.
, and
Kim
,
S.-G.
,
2005
, “
Design Considerations for MEMS-Scale Piezoelectric Mechanical Vibration Energy Harvesters
,”
Integr. Ferroelectr.
,
71
(1), pp.
121
160
.
17.
Kim
,
S. G.
,
Priya
,
S.
, and
Kanno
,
I.
,
2012
, “
Piezoelectric MEMS for Energy Harvesting
,”
MRS Bull.
,
37
(
11
), pp.
1039
1050
.
18.
Tang
,
L.
,
Yang
,
Y.
, and
Soh
,
C. K.
,
2010
, “
Toward Broadband Vibration-Based Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
21
(
18
), pp.
1867
1897
.
19.
Yang
,
Z.
, and
Yang
,
J.
,
2009
, “
Connected Vibrating Piezoelectric Bimorph Beams as a Wide-Band Piezoelectric Power Harvester
,”
J. Intell. Mater. Syst. Struct.
,
20
(
5
), pp.
569
574
.
20.
Kim
,
C.-I.
,
Jang
,
Y.-H.
,
Jeong
,
Y. H.
,
Lee
,
Y.-J.
,
Choi
,
J.-H.
,
Paiki
,
J.-H.
, and
Nahm
,
S.
,
2012
, “
Performance Enhancement of Elastic-Spring-Supported Piezoelectric Cantilever Generator by a 2-Degree-of-Freedom System
,”
Appl. Phys. Express
,
5
(
5
), p.
037101
.
21.
Kim
,
I.-H.
,
Jung
,
H.-J.
,
Lee
,
B. M.
, and
Jang
,
S.-J.
,
2011
, “
Broadband Energy-Harvesting Using a Two Degree-of-Freedom Vibrating Body
,”
Appl. Phys. Lett.
,
98
(
21
), p.
214102
.
22.
Tang
,
X.
, and
Zuo
,
L.
,
2011
, “
Enhanced Vibration Energy Harvesting Using Dual-Mass Systems
,”
J. Sound Vib.
,
330
(
21
), pp.
5199
5209
.
23.
Baker
,
J.
,
Roundy
,
S.
, and
Wright
,
P.
,
2005
, “Alternative Geometries for Increasing Power Density in Vibration Energy Scavenging for Wireless Sensor Networks,”
AIAA
Paper No. 2005-5617.
24.
Hu
,
H.
,
Gao
,
F.
,
Xue
,
H.
, and
Hu
,
Y.
,
2007
, “
Analysis on Structure and Performance of a Low Frequency Piezoelectric Power Harvester Using a Spiral-Shaped Bimorph
,”
Guti Lixue Xuebao/Acta Mech. Solida Sin.
,
28
(1), pp.
87
92
.
25.
Mo
,
C.
,
Radziemski
,
L. J.
, and
Clark
,
W. W.
,
2010
, “
Analysis of Piezoelectric Circular Diaphragm Energy Harvesters for Use in a Pressure Fluctuating System
,”
Smart Mater. Struct.
,
19
(
2
), p.
025016
.
26.
Ting
,
Y.
,
Hariyanto
,
G.
,
Hou
,
B. K.
,
Ricky
,
S.
,
Amelia
,
S.
, and
Wang
,
C.-K.
,
2009
, “
Investigation of Energy Harvest and Storage by Using Curve-Shape Piezoelectric Unimorph
,”
IEEE International Symposium on Industrial Electronics
(
ISIE
), Seoul, South Korea, July 5–8, pp.
2047
2052
.
27.
Wang
,
W.-C.
,
Wu
,
L.-Y.
,
Chen
,
L.-W.
, and
Liu
,
C.-M.
,
2010
, “
Acoustic Energy Harvesting by Piezoelectric Curved Beams in the Cavity of a Sonic Crystal
,”
Smart Mater. Struct.
,
19
(
4
), p.
045016
.
28.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters
,”
J. Intell. Mater. Syst. Struct.
,
19
(
11
), pp.
1311
1325
.
29.
Kauffman
,
J. L.
, and
Lesieutre
,
G. A.
,
2009
, “
A Low-Order Model for the Design of Piezoelectric Energy Harvesting Devices
,”
J. Intell. Mater. Syst. Struct.
,
20
(
5
), pp.
495
504
.
30.
Dietl
,
J. M.
,
Wickenheiser
,
A. M.
, and
Garcia
,
E.
,
2010
, “
A Timoshenko Beam Model for Cantilevered Piezoelectric Energy Harvesters
,”
Smart Mater. Struct.
,
19
(
5
), p.
055018
.
31.
Lumentut
,
M. F.
,
Teh
,
K. K.
, and
Howard
,
I.
,
2008
, “
Computational FEA Model of a Coupled Piezoelectric Sensor and Plate Structure for Energy Harvesting
,”
Aust. J. Mech. Eng.
,
5
(2), pp.
199
208
.
32.
Elvin
,
N. G.
, and
Elvin
,
A. A.
,
2009
, “
A General Equivalent Circuit Model for Piezoelectric Generators
,”
J. Intell. Mater. Syst. Struct.
,
20
(
1
), pp.
3
9
.
33.
Knowles
,
G. J.
, and
Murray
,
J. J.
,
1997
, “
Foundations of Piezoelectronic Theory for Distributed Parameter Systems
,”
Proc. SPIE
,
3039
, pp.
324
334
.
34.
Roundy
,
S.
,
2005
, “
On the Effectiveness of Vibration-Based Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
16
(
10
), pp.
809
823
.
35.
Shu
,
Y. C.
, and
Lien
,
I. C.
,
2006
, “
Efficiency of Energy Conversion for a Piezoelectric Power Harvesting System
,”
J. Micromech. Microeng.
,
16
(
11
), pp.
2429
2438
.
36.
Wickenheiser
,
A. M.
,
Reissman
,
T.
,
Wu
,
W.-J.
, and
Garcia
,
E.
,
2010
, “
Modeling the Effects of Electromechanical Coupling on Energy Storage Through Piezoelectric Energy Harvesting
,”
IEEE/ASME Trans. Mechatronics
,
15
(
3
), pp.
400
411
.
37.
Shu
,
Y. C.
, and
Lien
,
I. C.
,
2006
, “
Analysis of Power Output for Piezoelectric Energy Harvesting Systems
,”
Smart Mater. Struct.
,
15
(
6
), pp.
1499
1512
.
38.
Kim
,
M.
,
Hoegen
,
M.
,
Dugundji
,
J.
, and
Wardle
,
B. L.
,
2010
, “
Modeling and Experimental Verification of Proof Mass Effects on Vibration Energy Harvester Performance
,”
Smart Mater. Struct.
,
19
(
4
), p.
045023
.
39.
Roundy
,
S.
, and
Wright
,
P. K.
,
2004
, “
A Piezoelectric Vibration Based Generator for Wireless Electronics
,”
Smart Mater. Struct.
,
13
(
5
), pp.
1131
1142
.
40.
DuToit
,
N. E.
, and
Wardle
,
B. L.
,
2007
, “
Experimental Verification of Models for Microfabricated Piezoelectric Vibration Energy Harvesters
,”
AIAA J.
,
45
(
5
), pp.
1126
1137
.
41.
Renaud
,
M.
,
Karakaya
,
K.
,
Sterken
,
T.
,
Fiorini
,
P.
,
Van Hoof
,
C.
, and
Puers
,
R.
,
2008
, “
Fabrication, Modelling and Characterization of MEMS Piezoelectric Vibration Harvesters
,”
Sens. Actuators, A
,
145–146
, pp.
380
386
.
42.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
130
(
4
), p.
041002
.
43.
Tan
,
C. A.
, and
Lai
,
H. L.
,
2009
, “Transfer Function Modeling of Distributed Piezoelectric Vibration Energy Harvesters,”
ASME
Paper No. DETC2009-86853.
44.
Majeed
,
M. A.
,
Al-Ajmi
,
M.
, and
Benjeddou
,
A.
,
2011
, “
Semi-Analytical Free-Vibration Analysis of Piezoelectric Adaptive Beams Using the Distributed Transfer Function Approach
,”
Struct. Control Health Monit.
,
18
(
7
), pp.
723
736
.
45.
Majeed
,
M. A.
,
Benjeddou
,
A.
, and
Al-Ajmi
,
M. A.
,
2014
, “
Free Vibration Analysis of Moderately Thick Asymmetric Piezoelectric Adaptive Cantilever Beams Using the Distributed Transfer Function Approach
,”
J. Sound Vib.
,
333
(
15
), pp.
3339
3355
.
46.
Danesh-Yazdi
,
A. H.
,
Elvin
,
N.
, and
Andreopoulos
,
Y.
,
2014
, “
Green's Function Method for Piezoelectric Energy Harvesting Beams
,”
J. Sound Vib.
,
333
(
14
), pp.
3092
3108
.
47.
Butkoviskiy
,
A. G.
,
1982
,
Green's Functions and Transfer Functions Handbook
,
Halstead Press
, Ultimo, Australia.
48.
Yang
,
B.
, and
Tan
,
C. A.
,
1992
, “
Transfer Functions of One-Dimensional Distributed Parameter Systems
,”
ASME J. Appl. Mech.
,
59
(
4
), pp.
1009
1014
.
49.
Yang
,
B.
,
2005
,
Stress, Strain, and Structural Dynamics: An Interactive Handbook of Formulas, Solutions and MATLAB Toolboxes
,
Elsevier Academic Press
,
Burlington, MA
.
50.
Roach
,
G. F.
,
1981
,
Green's Functions
,
Cambridge University Press
,
New York
.
51.
Moler
,
C.
, and
Van Loan
,
C.
,
1978
, “
Nineteen Dubious Ways to Compute the Exponential of a Matrix
,”
SIAM Rev.
,
20
(
4
), pp.
801
836
.
52.
Moler
,
C.
, and
Van Loan
,
C.
,
2003
, “
Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later
,”
SIAM Rev.
,
45
(
1
), pp.
3
49
.
53.
Yang
,
B.
, and
Fang
,
H.
,
1994
, “
A Transfer-Function Formulation for Nonuniformly Distributed Parameter Systems
,”
Trans. ASME. J. Vib. Acoust.
,
116
(
4
), pp.
426
432
.
54.
Yang
,
B.
, and
Wu
,
X.
,
1997
, “
Transient Response of One-Dimensional Distributed Systems: A Closed Form Eigenfunction Expansion Realization
,”
J. Sound Vib.
,
208
(
5
), pp.
763
776
.
55.
Tan
,
C. A.
, and
Chung
,
C. H.
,
1993
, “
Transfer Function Formulation of Constrained Distributed Parameter Systems—Part I: Theory
,”
ASME J. Appl. Mech.
,
60
(
4
), pp.
1004
1010
.
56.
Yang
,
B.
,
1992
, “
Transfer Functions of Constrained/Combined One-Dimensional Continuous Dynamic Systems
,”
J. Sound Vib.
,
156
(
3
), pp.
425
443
.
57.
Chung
,
C. H.
, and
Tan
,
C. A.
,
1993
, “
Transfer Function Formulation of Constrained Distributed Parameter Systems—Part II: Applications
,”
ASME J. Appl. Mech.
,
60
(
4
), pp.
1012
1018
.
You do not currently have access to this content.