Circumferentially grooved, annular liquid seals typically exhibit good whirl frequency ratios (WFRs) and leakage reduction, yet their low effective damping can lead to instability. The current study investigates the rotordynamic behavior of a 15-step groove-on-rotor annular liquid seal by means of computational fluid dynamics (CFD), in contrast to the previous studies which focused on a groove-on-stator geometry. The seal dimensions and working conditions have been selected based on experiments of Moreland and Childs (2016, “Influence of Pre-Swirl and Eccentricity in Smooth Stator/Grooved Rotor Liquid Annular Seals, Measured Static and Rotordynamic Characteristics,” M.Sc. thesis, Texas A&M University, College Station, TX). The frequency ratios as high as four have been studied. Implementation of pressure-pressure inlet and outlet conditions make the need for loss coefficients at the entrance and exit of the seal redundant. A computationally efficient quasi-steady approach is used to obtain impedance curves as functions of the excitation frequency. The effectiveness of steady-state CFD approach is validated by comparison with the experimental results of Moreland and Childs. Results show good agreement in terms of leakage, preswirl ratio (PSR), and rotordynamic coefficients. It was found that PSR will be about 0.3–0.4 at the entrance of the seal in the case of radial injection, and outlet swirl ratio (OSR) always converges to values near 0.5 for current seal and operational conditions. The negative value of direct stiffness coefficients, large cross-coupled stiffness coefficients, and small direct damping coefficients explains the destabilizing nature of these seals. Finally, the influence of surface roughness on leakage, PSR, OSR, and stiffness coefficients is discussed.
Skip Nav Destination
Article navigation
June 2018
Research-Article
Prediction of Rotordynamic Performance of Smooth Stator-Grooved Rotor Liquid Annular Seals Utilizing Computational Fluid Dynamics
Farzam Mortazavi,
Farzam Mortazavi
Mem. ASME
Department of Mechanical Engineering,
Texas A&M University,
College Station, TX 77843
e-mail: farzam.mortazavi@tamu.edu
Department of Mechanical Engineering,
Texas A&M University,
College Station, TX 77843
e-mail: farzam.mortazavi@tamu.edu
Search for other works by this author on:
Alan Palazzolo
Alan Palazzolo
Fellow ASME
Department of Mechanical Engineering,
Texas A&M University,
College Station, TX 77843
e-mail: a-palazzolo@tamu.edu
Department of Mechanical Engineering,
Texas A&M University,
College Station, TX 77843
e-mail: a-palazzolo@tamu.edu
Search for other works by this author on:
Farzam Mortazavi
Mem. ASME
Department of Mechanical Engineering,
Texas A&M University,
College Station, TX 77843
e-mail: farzam.mortazavi@tamu.edu
Department of Mechanical Engineering,
Texas A&M University,
College Station, TX 77843
e-mail: farzam.mortazavi@tamu.edu
Alan Palazzolo
Fellow ASME
Department of Mechanical Engineering,
Texas A&M University,
College Station, TX 77843
e-mail: a-palazzolo@tamu.edu
Department of Mechanical Engineering,
Texas A&M University,
College Station, TX 77843
e-mail: a-palazzolo@tamu.edu
Contributed by the Technical Committee on Vibration and Sound of ASME for publication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received July 10, 2017; final manuscript received November 1, 2017; published online December 12, 2017. Assoc. Editor: Patrick S. Keogh.
J. Vib. Acoust. Jun 2018, 140(3): 031002 (9 pages)
Published Online: December 12, 2017
Article history
Received:
July 10, 2017
Revised:
November 1, 2017
Citation
Mortazavi, F., and Palazzolo, A. (December 12, 2017). "Prediction of Rotordynamic Performance of Smooth Stator-Grooved Rotor Liquid Annular Seals Utilizing Computational Fluid Dynamics." ASME. J. Vib. Acoust. June 2018; 140(3): 031002. https://doi.org/10.1115/1.4038437
Download citation file:
Get Email Alerts
Related Articles
Numerical Comparison of Rotordynamic Characteristics for a Fully Partitioned Pocket Damper Seal and a Labyrinth Seal With High Positive and Negative Inlet Preswirl
J. Eng. Gas Turbines Power (April,2016)
The Effects of Converging and Diverging Axial Taper on the Rotordynamic Coefficients of Liquid Annular Pressure Seals: Theory Versus Experiment
J. Vib. Acoust (April,2000)
Theory Versus Experiment for the Rotordynamic Characteristics of a High Pressure Honeycomb Annular Gas Seal at Eccentric Positions
J. Tribol (April,2003)
Rotordynamic Characterization of a Staggered Labyrinth Seal: Experimental Test Data and Comparison With Predictions
J. Eng. Gas Turbines Power (January,2019)
Related Proceedings Papers
Related Chapters
Fluidelastic Instability of Tube Bundles in Single-Phase Flow
Flow-Induced Vibration Handbook for Nuclear and Process Equipment
Lessons Learned: NRC Experience
Continuing and Changing Priorities of the ASME Boiler & Pressure Vessel Codes and Standards
Summary and Conclusions
Bearing Dynamic Coefficients in Rotordynamics: Computation Methods and Practical Applications