The inside-out ceramic turbine (ICT) is a promising concept to increase turbine inlet temperatures in microturbines by integrating individual monolithic ceramic. This architecture uses a carbon–polymer composite rim to support the blades mainly in compression. High tangential velocities lead to elevated radial displacement of the rim, and therefore, the rotor hub needs to have sufficient compliance to follow this radial displacement. However, the rotordynamics of a flexible hub is not widely understood. This paper presents the rotordynamic analysis of a highly flexible hub for an ICT architecture. Finite element modeling (FEM) is used to design a simplified turbine prototype that maximizes the hub flexibility to explore the limits of the concept. The rotordynamics behavior of the highly flexible hub is measured by spinning a 171-mm diameter prototype up to 49 krpm. This paper highlights three principal challenges of this particular rotordynamics. First, critical speeds mode shape becomes highly coupled with bearings displacement, shaft bending, and hub deformation. At high-speed, the hub deforms out of phase with the shaft, which can cause high stresses in the hub. Second, the angular position between unbalance masses of the flexible hub and the composite rim changes the unbalance response significantly. Finally, vibration causes high stresses in the hub, due to the relative displacement between the composite rim and the shaft, which could lead to failure of the hub. Nevertheless, the rotordynamics of an ICT configuration is manageable as long as the vibration-induced stress in the hub is kept under its limit.
Skip Nav Destination
Article navigation
February 2018
Research-Article
Rotordynamics of a Highly Flexible Hub for Inside-Out Ceramic Turbine Application: Finite Element Modeling and Experimental Validation
Céderick Landry,
Céderick Landry
Institut interdisciplinaire d'innovation
technologique,
Université de Sherbrooke,
3000 boul. de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Cederick.Landry@USherbrooke.ca
technologique,
Université de Sherbrooke,
3000 boul. de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Cederick.Landry@USherbrooke.ca
Search for other works by this author on:
Patrick K. Dubois,
Patrick K. Dubois
Institut interdisciplinaire d'innovation
technologique,
Université de Sherbrooke,
3000 boul. de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Patrick.K.Dubois@USherbrooke.ca
technologique,
Université de Sherbrooke,
3000 boul. de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Patrick.K.Dubois@USherbrooke.ca
Search for other works by this author on:
Jean-Sébastien Plante,
Jean-Sébastien Plante
Faculté de génie,
Université de Sherbrooke,
2500 boul. de l'Université,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Jean-Sebastien.Plante@USherbrooke.ca
Université de Sherbrooke,
2500 boul. de l'Université,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Jean-Sebastien.Plante@USherbrooke.ca
Search for other works by this author on:
François Charron,
François Charron
Faculté de génie,
Université de Sherbrooke,
2500 boul. de l'Université,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Francois.R.Charron@USherbrooke.ca
Université de Sherbrooke,
2500 boul. de l'Université,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Francois.R.Charron@USherbrooke.ca
Search for other works by this author on:
Mathieu Picard
Mathieu Picard
Faculté de génie,
Université de Sherbrooke,
3000 boul. de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Mathieu.Picard@USherbrooke.ca
Université de Sherbrooke,
3000 boul. de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Mathieu.Picard@USherbrooke.ca
Search for other works by this author on:
Céderick Landry
Institut interdisciplinaire d'innovation
technologique,
Université de Sherbrooke,
3000 boul. de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Cederick.Landry@USherbrooke.ca
technologique,
Université de Sherbrooke,
3000 boul. de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Cederick.Landry@USherbrooke.ca
Patrick K. Dubois
Institut interdisciplinaire d'innovation
technologique,
Université de Sherbrooke,
3000 boul. de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Patrick.K.Dubois@USherbrooke.ca
technologique,
Université de Sherbrooke,
3000 boul. de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Patrick.K.Dubois@USherbrooke.ca
Jean-Sébastien Plante
Faculté de génie,
Université de Sherbrooke,
2500 boul. de l'Université,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Jean-Sebastien.Plante@USherbrooke.ca
Université de Sherbrooke,
2500 boul. de l'Université,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Jean-Sebastien.Plante@USherbrooke.ca
François Charron
Faculté de génie,
Université de Sherbrooke,
2500 boul. de l'Université,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Francois.R.Charron@USherbrooke.ca
Université de Sherbrooke,
2500 boul. de l'Université,
Sherbrooke, QC J1K 2R1, Canada
e-mail: Francois.R.Charron@USherbrooke.ca
Mathieu Picard
Faculté de génie,
Université de Sherbrooke,
3000 boul. de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Mathieu.Picard@USherbrooke.ca
Université de Sherbrooke,
3000 boul. de l'Université,
Sherbrooke, QC J1K 0A5, Canada
e-mail: Mathieu.Picard@USherbrooke.ca
Contributed by the Technical Committee on Vibration and Sound of ASME for publication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received October 4, 2016; final manuscript received August 1, 2017; published online September 29, 2017. Assoc. Editor: John Yu.
J. Vib. Acoust. Feb 2018, 140(1): 011013 (10 pages)
Published Online: September 29, 2017
Article history
Received:
October 4, 2016
Revised:
August 1, 2017
Citation
Landry, C., Dubois, P. K., Plante, J., Charron, F., and Picard, M. (September 29, 2017). "Rotordynamics of a Highly Flexible Hub for Inside-Out Ceramic Turbine Application: Finite Element Modeling and Experimental Validation." ASME. J. Vib. Acoust. February 2018; 140(1): 011013. https://doi.org/10.1115/1.4037700
Download citation file:
Get Email Alerts
Cited By
Extension of Hamiltonian Mechanics to Non-Conservative Systems Via Higher-Order Dynamics
J. Vib. Acoust (December 2024)
Related Articles
Design Space Exploration of a Beam Flexible Hub Concept for an Inside-Out Ceramic Turbine Using a Simplified Rotordynamic Finite Element Model
J. Vib. Acoust (February,2019)
2000-hp Motor Support Structure Vibration Sensitivity: Tests, Finite Element Analysis, and Suggested Strategies for Prevention
J. Vib., Acoust., Stress, and Reliab (January,1984)
Related Chapters
Data Tabulations
Structural Shear Joints: Analyses, Properties and Design for Repeat Loading
Introduction to Malfunctions
Fundamentals of Rotating Machinery Diagnostics
Characterization of Ultra-High Temperature and Polymorphic Ceramics
Advanced Multifunctional Lightweight Aerostructures: Design, Development, and Implementation