We present a prototype vibration isolator whose design is inspired by origami-based foldable cylinders with torsional buckling patterns. The vibration isolator works as a nonlinear spring that has quasi-zero spring stiffness in a given frequency region, where it does not transmit vibration in theory. We evaluate the performance of the prototype vibration isolator through excitation experiments via the use of harmonic oscillations and seismic-wave simulations of the Tohoku-Pacific Ocean and Kobe earthquakes. The results indicate that the isolator with the current specification is able to suppress the transmission of vibrations with frequencies of over 6 Hz. The functionality and constraints of the isolator are also clarified. It has been known that origami-based foldable cylinders with torsional buckling patterns provide bistable folding motions under given conditions. In a previous study, we proposed a vibration isolator utilizing the bistability characteristics and numerically confirmed the device's validity as a vibration isolator. Here, we attempt prototyping the isolator with the use of versatile metallic components and experimentally evaluate the isolation performance.

References

1.
Carrella
,
A.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2007
, “
Static Analysis of a Passive Vibration Isolator With Quasi-Zero Stiffness Characteristic
,”
J. Sound Vib.
,
301
(
3–5
), pp.
678
689
.
2.
Carrella
,
A.
,
2010
,
Passive Vibration Isolators With High-Static-Low-Dynamic-Stiffness
,
VDM Verlag
,
Saarbrücken, Germany
.
3.
Kovacic
,
I.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2008
, “
A Study of a Nonlinear Vibration Isolator With a Quasi-Zero Stiffness Characteristic
,”
J. Sound Vib.
,
315
(
3
), pp.
700
711
.
4.
Lee
,
C. M.
,
Goverdovskiy
,
V. N.
, and
Temnikov
,
A. I.
,
2007
, “
Design of Springs With ‘Negative’ Stiffness to Improve Vehicle Driver Vibration Isolation
,”
J. Sound Vib.
,
302
(
4–5
), pp.
865
874
.
5.
Fulcher
,
B. A.
,
Shahan
,
D. W.
,
Haberman
,
M. R.
,
Seepersad
,
C. C.
, and
Wilson
,
P. S.
,
2014
, “
Analytical and Experimental Investigation of Buckled Beams as Negative Stiffness Elements for Passive Vibration and Shock Isolation Systems
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031009
.
6.
Fujita
,
E.
,
1999
, “
New Vibration System Using a Magneto-Spring (in Japanese)
,”
J. Magn. Soc. Jpn.
,
23
(
3
), pp.
840
846
.
7.
Fujita
,
E.
,
Nakagawa
,
N.
,
Ogura
,
Y.
, and
Kojima
,
S.
,
2000
, “
An Experimental Study for a Nonlinear Combination Spring Using a Magnet-Spring (in Japanese)
,”
Trans. Jpn. Soc. Mech. Eng., Ser. C
,
66
(
645
), pp.
1445
1452
.
8.
Nakagawa
,
N.
,
Fujita
,
E.
,
Sugimoto
,
E.
,
Kojima
,
S.
, and
Otsubo
,
K.
,
2001
, “
Pendulum Suspension System With Quasi-Zero Spring Constant Using a Magnet-Spring
,”
Bull. Grad. Sch. Eng.
,
50
(
1
), pp.
9
14
.
9.
Robertson
,
W. S.
,
Kidner
,
M. R. F.
,
Cazzolato
,
B. S.
, and
Zander
,
A. C.
,
2009
, “
Theoretical Design Parameters for a Quasi-Zero Stiffness Magnetic Spring for Vibration Isolation
,”
J. Sound Vib.
,
326
(
1–2
), pp.
88
103
.
10.
Xu
,
D.
,
Yu
,
Q.
,
Zhou
,
J.
, and
Bishop
,
S. R.
,
2013
, “
Theoretical and Experimental Analyses of a Nonlinear Magnetic Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
J. Sound Vib.
,
332
(
14
), pp.
3377
3389
.
11.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1992
, “
Inextensional Wrapping of Flat Membranes
,”
First International Seminar on Structural Morphology
, Montpellier, France, Sept. 7–11, pp.
203
215
.
12.
Nojima
,
T.
,
2001
, “
Structure With Folding Lines, Folding Line Forming Mold, and Folding Line Forming Method
,” Patent Publication No.
WO2001081821 A9
.
13.
Tachi
,
T.
,
2010
, “
Freeform Rigid-Foldable Structure Using Bidirectionally Flat-Foldable Planar Quadrilateral Mesh
,”
Advances in Architectural Geometry
, Springer-Verlag, Berlin, pp.
87
102
.
14.
Miura
,
K.
,
2013
, “
Foldable Plate Structures and Applications (in Japanese)
,”
Bulletin of Society of Automotive Technology of Japan
,
67
(
5
), pp.
52
58
.
15.
Natori
,
M. C.
,
Katsumata
,
N.
,
Yamakawa
,
H.
,
Sakamoto
,
H.
, and
Kishimoto
,
N.
,
2013
, “
Conceptual Model Study Using Origami for Membrane Space Structures
,”
ASME
Paper No. DETC2013-13490.
16.
Kresling
,
B.
,
2001
, “
Folded Tubes as Compared to Kikko (Tortoise-Shell) Bamboo
,”
Origami 3
,
AK Peters
,
Natick, MA
, pp.
197
207
.
17.
Nojima
,
T.
,
2002
, “
Modelling of Folding Patterns in Flat Membranes and Cylinders by Origami
,”
Int. J. Jpn. Soc. Mech. Eng.
,
45
(
1
), pp.
364
370
.
18.
Hunt
,
G. W.
, and
Ario
,
I.
,
2005
, “
Twist Buckling and the Foldable Cylinder: An Exercise in Origami
,”
Int. J. Non-Linear Mech.
,
40
(
6
), pp.
833
843
.
19.
Kresling
,
B.
,
2008
, “
Natural Twist Buckling in Shells: From the Hawkmoth's Bellows to the Deployable Kresling-Pattern and Cylindrical Miura-Ori
,” 6th International Conference on Computation of Shell and Spatial Structures (
IASS-IACM
): Spanning Nano to Mega, Ithaca, NY, May 28–31, pp. 288–291.
20.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1994
, “
The Folding of Triangulated Cylinders, Part I: Geometric Considerations
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
773
777
.
21.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1994
, “
The Folding of Triangulated Cylinders, Part II: The Folding Process
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
778
783
.
22.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1996
, “
The Folding of Triangulated Cylinders, Part III: Experiments
,”
ASME J. Appl. Mech.
,
63
(
1
), pp.
77
83
.
23.
Nagashima
,
G.
, and
Nojima
,
T.
,
1999
, “
Development of Foldable Triangulated Cylinder (in Japanese)
,”
7th JSME Materials and Processing Conference (M&P)
, pp.
153
154
.
24.
Jianguo
,
C.
,
Xiaowei
,
D.
,
Ya
,
Z.
,
Jian
,
F.
, and
Yongming
,
T.
,
2015
, “
Bistable Behavior of the Cylindrical Origami Structure With Kresling Pattern
,”
ASME J. Mech. Des.
,
137
(
6
), p.
061406
.
25.
Hagiwara
,
I.
,
Ishida
,
S.
, and
Uchida
,
H.
,
2013
, “
Nonlinear Springs and Vibration Isolators
,” Japanese Patent Application No. 2013-220548.
26.
Ishida
,
S.
,
Uchida
,
H.
, and
Hagiwara
,
I.
,
2014
, “
Vibration Isolators Using Nonlinear Spring Characteristics of Origami-Based Foldable Structures (in Japanese)
,”
J. Jpn. Soc. Mech. Eng.
,
80
(
820
), p.
DR0384
.
27.
Ishida
,
S.
,
Uchida
,
H.
,
Shimosaka
,
H.
, and
Hagiwara
,
I.
,
2017
, “
Design and Numerical Analysis of Vibration Isolators With Quasi-Zero-Stiffness Characteristics Using Bi-Stable Foldable Structures
,”
ASME J. Vib. Acoust.
, (in press).
28.
Japan Meteorological Agency, 2017, “
Seismic Intensity Database
,” Japan Meteorological Agency, Tokyo, Japan, accessed, Mar. 15, 2017, http://www.data.jma.go.jp/svd/eqdb/data/shindo/index.php (in Japanese).
You do not currently have access to this content.