The dynamic motion of a parametrically excited microbeam-string affected by nonlinear damping is considered asymptotically and numerically. It is assumed that the geometrically nonlinear beam-string, subject to only modulated alternating current voltage, is closer to one of the electrodes, thus resulting in an asymmetric dual gap configuration. A consequence of these novel assumptions is a combined parametric and hard excitation in the derived continuum-based model that incorporates both linear viscous and nonlinear viscoelastic damping terms. To understand how these assumptions influence the beam's performance, the conditions that lead to both principal parametric resonance and a three-to-one internal resonance are investigated. Such conditions are derived analytically from a reduced-order nonlinear model for the first three modes of the microbeam-string using the asymptotic multiple-scales method which requires reconstitution of the slow-scale evolution equations to deduce an approximate spatio-temporal solution. The response is investigated analytically and numerically and reveals a bifurcation structure that includes coexisting in-phase and out-of-phase solutions, Hopf bifurcations, and conditions for the loss of orbital stability culminating with nonstationary quasi-periodic solutions and chaotic strange attractors.

References

1.
Hornstein
,
S.
, and
Gottlieb
,
O.
,
2012
, “
Nonlinear Multimode Dynamics and Internal Resonances of the Scan Process in Noncontacting Atomic Force Microscopy
,”
J. Appl. Phys.
,
112
(
7
), p. 074314.
2.
Hacker
,
E.
, and
Gottlieb
,
O.
,
2012
, “
Internal Resonance Based Sensing in Non-Contact Atomic Force Microscopy
,”
Appl. Phys. Lett.
,
101
(
5
), p.
053106
.
3.
Buks
,
E.
, and
Yurke
,
B.
,
2006
, “
Mass Detection With a Nonlinear Nanomechanical Resonator
,”
Phys. Rev. E
,
74
(
4
), p.
046619
.
4.
Souayeh
,
S.
, and
Kacem
,
N.
,
2014
, “
Computational Models for Large Amplitude Nonlinear Vibrations of Electrostatically Actuated Carbon Nanotube-Based Mass Sensors
,”
Sens. Actuators A
,
208
, pp.
10
20
.
5.
Ilic
,
B.
,
Yang
,
Y.
,
Aubin
,
K.
,
Reichenbach
,
R.
,
Krylov
,
S.
, and
Craighead
,
H.
,
2005
, “
Enumeration of DNA Molecules Bound to a Nanomechanical Oscillator
,”
Nano Lett.
,
5
(
5
), pp.
925
929
.
6.
Vidal-Álvarez
,
G.
,
Torres
,
F.
,
Barniol
,
N.
, and
Gottlieb
,
O.
,
2015
, “
The Influence of the Parasitic Current on the Nonlinear Electrical Response of Capacitively Sensed Cantilever Resonators
,”
J. Appl. Phys.
,
117
(
15
), p.
154502
.
7.
Vidal-Álvarez
,
G.
,
Agustí
,
J.
,
Torres
,
F.
,
Abadal
,
G.
,
Barniol
,
N.
,
Llobet
,
J.
,
Sansa
,
M.
,
Fernández-Regúlez
,
M.
,
Pérez-Murano
,
F.
,
San Paulo
,
Á.
, and
Gottlieb
,
O.
,
2015
, “
Top-Down Silicon Microcantilever With Coupled Bottom-Up Silicon Nanowire for Enhanced Mass Resolution
,”
Nanotechnology
,
26
(
14
), p.
145502
.
8.
Hassanpour
,
P. A.
,
Nieva
,
P. M.
, and
Khajepour
,
A.
,
2011
, “
Stochastic Analysis of a Novel Force Sensor Based on Bifurcation of a Micro-Structure
,”
J. Sound Vib.
,
330
(
23
), pp.
5753
5768
.
9.
Rhoads
,
J. F.
,
Shaw
,
S. W.
, and
Turner
,
K. L.
,
2006
, “
The Nonlinear Response of Resonant Microbeam Systems With Purely-Parametric Electrostatic Actuation
,”
J. Micromech. Microeng.
,
16
(
5
), pp.
890
899
.
10.
Nayfeh
,
A. H.
,
Younis
,
M. I.
, and
Abdel-Rahman
,
E. M.
,
2007
, “
Dynamic Pull-In Phenomenon in MEMS Resonators
,”
Nonlinear Dyn.
,
48
(
1–2
), pp.
153
163
.
11.
Karabalin
,
R. B.
,
Cross
,
M. C.
, and
Roukes
,
M. L.
,
2009
, “
Nonlinear Dynamics and Chaos in Two Coupled Nanomechanical Resonators
,”
Phys. Rev. B
,
79
(
16
), p.
165309
.
12.
Zaitsev
,
S.
,
Shtempluck
,
O.
,
Buks
,
E.
, and
Gottlieb
,
O.
,
2012
, “
Nonlinear Damping in a Micromechanical Oscillator
,”
Nonlinear Dyn.
,
67
(
1
), pp.
859
883
.
13.
Gutschmidt
,
S.
, and
Gottlieb
,
O.
,
2012
, “
Nonlinear Dynamic Behavior of a Microbeam Array Subject to Parametric Actuation at Low, Medium and Large DC-Voltages
,”
Nonlinear Dyn.
,
67
(
1
), pp.
1
36
.
14.
Shoshani
,
O.
, and
Shaw
,
S. W.
,
2016
, “
Generalized Parametric Resonance
,”
SIAM J. Appl. Dyn. Syst.
,
15
(
2
), pp.
767
788
.
15.
Wang
,
F.
, and
Bajaj
,
A.
,
2010
, “
Nonlinear Dynamics of a Three-Beam Structure With Attached Mass and Three-Mode Interactions
,”
Nonlinear Dyn.
,
62
(
1–2
), pp.
461
484
.
16.
Ruzziconi
,
L.
,
Younis
,
M.
, and
Lenci
,
S.
,
2013
, “
An Electrically Actuated Imperfect Microbeam: Dynamical Integrity for Interpreting and Predicting the Device Response
,”
Meccanica
,
48
(
7
), pp.
1761
1775
.
17.
Nguyen
,
C. H.
,
Nguyen
,
D. S.
, and
Halvorsen
,
E.
,
2014
, “
Experimental Validation of Damping Model for a MEMS Bistable Electrostatic Energy Harvester
,”
J. Phys.: Conf. Ser.
,
557
(
1
), p.
012114
.
18.
Kacem
,
N.
,
Hentz
,
S.
,
Pinto
,
D.
,
Reig
,
B.
, and
Nguyen
,
V.
, “
Nonlinear Dynamics of Nanomechanical Beam Resonators: Improving the Performance of NEMS-Based Sensors
,”
Nanotechnology
,
20
(
27
), p.
275501
.
19.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1995
,
Nonlinear Oscillations
,
Wiley Classics Library, Wiley
,
New York
.
20.
Kacem
,
N.
, and
Hentz
,
S.
,
2009
, “
Bifurcation Topology Tuning of a Mixed Behavior in Nonlinear Micromechanical Resonators
,”
Appl. Phys. Lett.
,
95
(
18
), p.
183104
.
21.
Sobreviela
,
G.
,
Vidal-Álvarez
,
G.
,
Riverola
,
M.
,
Uranga
,
A.
,
Torres
,
F.
, and
Barniol
,
N.
,
2017
, “
Suppression of the A-f-Mediated Noise at the Top Bifurcation Point in a MEMS Resonator With Both Hardening and Softening Hysteretic Cycles
,”
Sens. Actuators A
,
256
, pp.
59
65
.
22.
Kacem
,
N.
,
Baguet
,
S.
,
Dufour
,
R.
, and
Hentz
,
S.
,
2011
, “
Stability Control of Nonlinear Micromechanical Resonators Under Simultaneous Primary and Superharmonic Resonances
,”
Appl. Phys. Lett.
,
98
(
19
), p.
193507
.
23.
Shabana
,
A. A.
,
1991
,
Theory of Vibration
, Vol.
2
,
Springer-Verlag
, New York.
24.
Meirovitch
,
L.
,
1997
,
Principles and Techniques of Vibrations
, Vol.
1
,
Prentice Hall
,
Upper Saddle River, NJ
.
25.
Pandey
,
A. K.
,
Gottlieb
,
O.
,
Shtempluck
,
O.
, and
Buks
,
E.
,
2010
, “
Performance of an AuPd Micromechanical Resonator as a Temperature Sensor
,”
Appl. Phys. Lett.
,
96
(
20
), p.
203105
.
26.
Nayfeh
,
A. H.
,
2005
, “
Resolving Controversies in the Application of the Method of Multiple Scales and the Generalized Method of Averaging
,”
Nonlinear Dyn.
,
40
(
1
), pp.
61
102
.
27.
Gutschmidt
,
S.
, and
Gottlieb
,
O.
,
2010
, “
Bifurcations and Loss of Orbital Stability in Nonlinear Viscoelastic Beam Arrays Subject to Parametric Actuation
,”
J. Sound Vib.
,
329
(
18
), pp.
3835
3855
.
28.
Govaerts
,
W.
,
Kuznetsov
,
Y. A.
, and
Dhooge
,
A.
,
2005
, “
Numerical Continuation of Bifurcations of Limit Cycles in MATLAB
,”
SIAM J. Sci. Comput.
,
27
(
1
), pp.
231
252
.
29.
Govaerts
,
W.
,
Kuznetsov
,
Y. A.
, and
Dhooge
,
A.
,
2003
, “
MATCONT: A MATLAB Package for Numerical Bifurcation Analysis of ODEs
,”
ACM Trans. Math. Software
,
29
(
2
), pp.
141
164
.
30.
Sahin
,
O.
,
Magonov
,
S.
,
Su
,
C.
,
Quate
,
C. F.
, and
Solgaard
,
O.
,
2007
, “
An Atomic Force Microscope Tip Designed to Measure Time-Varying Nanomechanical Forces
,”
Nat. Nanotechnol.
,
2
(
8
), pp.
507
514
.
You do not currently have access to this content.