The two-dimensional Helmholtz equation with zero normal derivatives on the boundary is studied using boundary collocation. The frequencies and modes are found for the isosceles triangular and rhombic domains. The solutions are important in predicting the standing waves in containers and also the transverse electric (TE) waves of electromagnetic, optical, and acoustic wave guides.
Issue Section:
Technical Brief
References
1.
Rayleigh
, J. W. S.
, 1945
, “Vibration of Membranes
,” The Theory of Sound
, 2nd ed., Vol. 1
, Dover
, New York
, Chap. 9.2.
Weaver
, W.
, Timoshenko
, S. P.
, and Young
, G. H.
, 1990
, “Continua With Infinite Degrees of Freedom
,” Vibration Problems in Engineering
, 5th ed., Wiley
, New York
, Chap. 5.3.
Wang
, C. Y.
, and Wang
, C. M.
, 2014
, “Vibration of Membranes
,” Structural Vibration
, CRC Press
, Boca Raton, FL
, Chap. 3.4.
Harrington
, R. F.
, 2001
, “Plane Wave Functions
,” Time-Harmonic Electromagnetic Fields
, Wiley
, New York
, Chap. 4.5.
Lamb
, H.
, 1945
, “Tidal Waves
,” Hydrodynamics
, Dover
, New York
, Chap. 8.6.
Morse
, P. M.
, and Feshbach
, H.
, 1953
, “Ordinary Differential Equations
,” Methods of Theoretical Physics
, McGraw-Hill
, New York
, Chap. 5.7.
Kostin
, G. V.
, and Saurin
, V. V.
, 2001
, “Analysis of Triangle Membrane Vibration by FEM and Ritz Method With Smooth Piecewise Polynomial Basis Functions
,” Z. Angew. Math. Mech.
, 81
, pp. S873
–S874
.8.
Bauer
, L.
, and Reiss
, E. L.
, 1973
, “Free Vibrations of Rhombic Plates and Membranes
,” J. Acoust. Soc. Am.
, 54
(5
), pp. 1373
–1375
.9.
Chaudhari
, P. R.
, and Patil
, P. B.
, 1991
, “Propagation in Twisted Triangular Waveguides
,” Indian J. Pure Appl. Phys.
, 29
(8
), pp. 566
–568
.10.
Sharma
, A. K.
, and Bhat
, B.
, 1982
, “Analysis of Triangular Microstrip Resonators
,” IEEE Trans. Microwave Theory Tech.
, 30
(11
), pp. 2029
–2031
.11.
Ivanov
, M. I.
, 2004
, “Free Tides in Two-Dimensional Uniform Depth Basins
,” Fluid Dyn.
, 39
(5
) pp. 779
–789
.12.
Helszajn
, J.
, and James
, D. S.
, 1978
, “Planar Triangular Resonators With Magnetic Walls
,” IEEE Trans. Microwave Theory Tech.
, 26
(2
), pp. 95
–100
.13.
Overfelt
, P. L.
, and White
, D. J.
, 1986
, “TE and TM Modes of Some Triangular Cross Section Waveguides Using Superposition of Plane Waves
,” IEEE Trans. Microwave Theory Tech.
, 34
(1
), pp.161
–167
.14.
Collin
, R. E.
, 1991
, “Basic Electromagnetic Theory
,” Field Theory of Guided Waves
, 2nd ed., IEEE Press
, New York
, Chap. 1.15.
Lamb
, H.
, 1879
, “Waves in Liquids
,” A Treatise on the Mathematical Theory of the Motion of Fluids
, Cambridge University Press
, Cambridge, UK
, Chap. 7.16.
Kolodziej
, J. A.
, 1987
, “Review of Application of Boundary Collocation Methods in Mechanics of Continuous Media
,” Solid Mech. Arch.
, 12
(4
), pp. 187
–231
.17.
Schelkunoff
, S. A.
, 1943
, “Waves, Wave Guides and Resonators
,” Electromagnetic Waves
, Van Nostrand
, New York
, Chap. 10.18.
Wang
, C. Y.
, 2010
, “Exact Solution of Equilateral Triangular Waveguide
,” Electron. Lett.
, 46
(13
), pp. 925
–930
.19.
Olver
, F. W. J.
, 1972
, “Bessel Functions of Integer Order
,” Handbook of Mathematical Functions
, M.
Abramowitz
and I. A.
Stegun
, eds., Dover
, New York
, Chap. 9.Copyright © 2016 by ASME
You do not currently have access to this content.