As a new approach to passive sound control in low-frequency domain, the targeted energy transfer (TET) phenomenon has been investigated inside a three-dimensional (3D) acoustic cavity by considering a two degrees-of-freedom (DOF) system with an acoustic mode and a membrane nonlinear energy sink (NES). The beginning of TET phenomenon of the 2DOF system and the desired working zone for the membrane NES have been defined. In order to enhance the robustness and the effective TET range in acoustic cavities, a 3DOF system with two membranes and one acoustic mode is studied in this paper. We consider two different membranes and two almost identical membranes to analyze the TET phenomenon, respectively. The desired working zone which was obtained by the 2DOF system is applied to analyze the 3DOF system. We observe that two membranes can enlarge the desired working zone.

References

1.
Gendelman
,
O.
,
Manevitch
,
L.
,
Vakakis
,
A.
, and
M’Closkey
,
R.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators: Part I—Dynamics of the Underlying Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
34
41
.
2.
Vakakis
,
A.
, and
Gendelman
,
O.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators: Part II—Resonance Capture
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
42
48
.
3.
Gendelman
,
O.
,
Gourdon
,
E.
, and
Lamarque
,
C.
,
2006
, “
Quasiperiodic Energy Pumping in Coupled Oscillators Under Periodic Forcing
,”
J. Sound Vib.
,
294
(
4–5
), pp.
651
662
.
4.
Gourdon
,
E.
,
Alexander
,
N.
,
Taylor
,
C.
,
Lamarque
,
C.
, and
Pernot
,
S.
,
2007
, “
Nonlinear Energy Pumping Under Transient Forcing With Strongly Nonlinear Coupling: Theoretical and Experimental Results
,”
J. Sound Vib.
,
300
(
3–5
), pp.
522
551
.
5.
Nucera
,
F.
,
Vakakis
,
A.
,
McFarland
,
D.
,
Bergman
,
L.
, and
Kerschen
,
G.
,
2007
, “
Targeted Energy Transfers in Vibro-Impact Oscillators for Seismic Mitigation
,”
Nonlinear Dyn.
,
50
(
3
), pp.
651
677
.
6.
Starosvetsky
,
Y.
, and
Gendelman
,
O.
,
2009
, “
Vibration Absorption in Systems With a Nonlinear Energy Sink: Nonlinear Pumping
,”
J. Sound Vib.
,
324
(
3–5
), pp.
916
939
.
7.
Gourc
,
E.
,
Michon
,
G.
,
Seguy
,
S.
, and
Berlioz
,
A.
,
2015
, “
Targeted Energy Transfer Under Harmonic Forcing With a Vibro-Impact Nonlinear Energy Sink: Analytical and Experimental Developments
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031008
.
8.
Cochelin
,
B.
,
Herzog
,
P.
, and
Mattei
,
P.-O.
,
2006
, “
Experimental Evidence of Energy Pumping in Acoustics
,”
C. R. Mec.
,
334
(
11
), pp.
639
644
.
9.
Bellet
,
R.
,
2010
, “
Vers une nouvelle technique de contrôle passif du bruit: Absorbeur dynamique non linéaire et pompage énergétique
,” Ph.D. thesis, Université de Provence (AIX-MARSEILLE 1), Marseille, France.
10.
Bellet
,
R.
,
Cochelin
,
B.
,
Côte
,
R.
, and
Mattei
,
P.-O.
,
2012
, “
Enhancing the Dynamic Range of Targeted Energy Transfer in Acoustics Using Several Nonlinear Membrane Absorbers
,”
J. Sound Vib.
,
331
(
26
), pp.
5657
5668
.
11.
Mariani
,
R.
,
Bellizzi
,
S.
,
Cochelin
,
B.
,
Herzog
,
P.
, and
Mattei
,
P.-O.
,
2011
, “
Toward an Adjustable Nonlinear Low Frequency Acoustic Absorber
,”
J. Sound Vib.
,
330
(
22
), pp.
5245
5258
.
12.
Vakakis
,
A.
,
Manevitch
,
L.
,
Musienko
,
A.
,
Kerschen
,
G.
, and
Bergman
,
L.
,
2005
, “
Transient Dynamics of a Dispersive Elastic Wave Guide Weakly Coupled to an Essentially Nonlinear End Attachment
,”
Wave Motion
,
41
(
2
), pp.
109
132
.
13.
Georgiades
,
F.
,
Vakakis
,
A.
, and
Kerschen
,
G.
,
2007
, “
Broadband Passive Targeted Energy Pumping From a Linear Dispersive Rod to a Lightweight Essentially Non-Linear End Attachment
,”
Int. J. Non-Linear Mech.
,
42
(
5
), pp.
773
788
.
14.
Panagopoulos
,
P.
,
Vakakis
,
A.
, and
Tsakirtzis
,
S.
,
2004
, “
Multi-Scaled Analysis of the Damped Dynamics of an Elastic Rod With an Essentially Nonlinear End Attachment
,”
Int. J. Solids Struct.
,
41
, pp.
6505
6528
.
15.
Georgiades
,
F.
, and
Vakakis
,
A.
,
2007
, “
Dynamics of a Linear Beam With an Attached Local Nonlinear Energy Sink
,”
Commun. Nonlinear Sci. Numer. Simul.
,
12
(
5
), pp.
643
651
.
16.
Ahmadabadi
,
Z. N.
, and
Khadem
,
S.
,
2012
, “
Nonlinear Vibration Control of a Cantilever Beam by a Nonlinear Energy Sink
,”
Mech. Mach. Theory
,
50
, pp.
134
149
.
17.
Georgiades
,
F.
, and
Vakakis
,
A.
,
2009
, “
Passive Targeted Energy Transfers and Strong Modal Interactions in the Dynamics of a Thin Plate With Strongly Nonlinear Attachments
,”
Int. J. Solids Struct.
,
42
(
11–12
), pp.
773
788
.
18.
Kerschen
,
G.
,
Kowtko
,
J.
,
McFarland
,
D.
,
Bergman
,
L.
, and
Vakakis
,
A.
,
2007
, “
Theoretical and Experimental Study of Multimodal Targeted Energy Transfer in a System of Coupled Oscillators
,”
Nonlinear Dyn.
,
47
, pp.
285
309
.
19.
Pham
,
T.
,
Pernot
,
S.
, and
Lamarque
,
C.
,
2010
, “
Competitive Energy Transfer Between a Two Degrees-of-Freedom Dynamic System and an Absorber With Essential Nonlinearity
,”
Nonlinear Dyn.
,
62
(
3
), pp.
573
592
.
20.
Manevitch
,
L.
,
Gendelman
,
O.
,
Musienko
,
A.
,
Vakakis
,
A.
, and
Bergman
,
L.
,
2003
, “
Dynamic Interaction of a Semi-Infinite Linear Chain of Coupled Oscillators With a Strongly Nonlinear End Attachment
,”
Physica D
,
178
(
1–2
), pp.
1
18
.
21.
Lee
,
Y.
,
Vakakis
,
A.
,
Bergman
,
L.
,
McFarland
,
D.
, and
Kerschen
,
G.
,
2008
, “
Enhancing Robustness of Aeroelastic Instability Suppression Using MDOF Energy Sinks
,”
AIAA J.
,
46
(
6
), pp.
1371
1394
.
22.
Tsakirtzis
,
S.
,
Kerschen
,
G.
,
Panagopoulos
,
P.
, and
Vakakis
,
A.
,
2005
, “
Multi-Frequency Nonlinear Energy Transfer From Linear Oscillators to Mdof Essentially Nonlinear Attachments
,”
J. Sound Vib.
,
285
(
1–2
), pp.
483
490
.
23.
Tsakirtzis
,
S.
,
Vakakis
,
A.
, and
Panagopoulos
,
P.
,
2007
, “
Broadband Energy Exchanges Between a Dissipative Elastic Rod and a Multi-Degree-of-Freedom Dissipative Essentially Non-Linear Attachment
,”
Int. J. Non-Linear Mech.
,
42
(
1
), pp.
36
57
.
24.
Tsakirtzis
,
S.
,
Panagopoulos
,
P.
,
Kerschen
,
G.
,
Gendelman
,
O.
,
Vakakis
,
A.
, and
Bergman
,
L.
,
2007
, “
Complex Dynamics and Targeted Energy Transfer in Linear Oscillators Coupled to Multi-Degree-of-Freedom Essentially Nonlinear Attachments
,”
Nonlinear Dyn.
,
48
(
3
), pp.
285
318
.
25.
Musienko
,
A.
,
Lamarque
,
C.
, and
Manevitch
,
L.
,
2006
, “
Design of Mechanical Energy Pumping Devices
,”
J. Vib. Control
,
12
(
4
), pp.
355
371
.
26.
Ma
,
X.
,
Vakakis
,
A.
, and
Bergman
,
L.
,
2008
, “
Karhunen–Loeve Analysis and Order Reduction of the Transient Dynamics of Linear Coupled Oscillators With Strongly Nonlinear End Attachments
,”
J. Sound Vib.
,
309
(
3–5
), pp.
569
587
.
27.
Gendelman
,
O.
,
Sapsis
,
T.
,
Vakakis
,
A.
, and
Bergman
,
L.
,
2011
, “
Enhanced Passive Targeted Energy Transfer in Strongly Nonlinear Mechanical Oscillators
,”
J. Sound Vib.
,
330
(
1
), pp.
1
8
.
28.
Wierschem
,
N.
,
Quinn
,
D.
,
Hubbard
,
S.
,
Al-Shudeifat
,
M. A.
,
Michael McFarland
,
D.
,
Luo
,
J.
,
Fahnestock
,
L. A.
,
Spencer
,
B. F.
, Jr.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Passive Damping Enhancement a Two-Degree-of-Freedom System Through a Strongly Nonlinear Two-Degree-of-Freedom Attachment
,”
J. Sound Vib.
,
331
(
25
), pp.
5393
5407
.
29.
Vaurigaud
,
B.
,
Savadkoohi
,
A. T.
, and
Lamarque
,
C.
,
2011
, “
Targeted Energy Transfer With Parallel Nonlinear Energy Sinks—Part I: Design Theory and Numerical Results
,”
Nonlinear Dyn.
,
66
(
4
), pp.
763
780
.
30.
Savadkoohi
,
A.
,
Vaurigaud
,
B.
,
Lamarque
,
C.
, and
Pernot
,
S.
,
2012
, “
Targeted Energy Transfer With Parallel Nonlinear Energy Sinks—Part II: Theory and Experiments
,”
Nonlinear Dyn.
,
67
(
1
), pp.
37
46
.
31.
Shao
,
J.
, and
Cochelin
,
B.
,
2014
, “
Theoretical and Numerical Study of Targeted Energy Transfer Inside an Acoustic Cavity by a Non-Linear Membrane Absorber
,”
Int. J. Non-Linear Mech.
,
64
, pp.
85
92
.
32.
Wu
,
X.
,
Shao
,
J.
, and
Cochelin
,
B.
,
2016
, “
Parameters Design of a Nonlinear Membrane Absorber Applied to 3D Acoustic Cavity Based on Targeted Energy Transfer (TET)
,”
Noise Contr. Eng. J.
,
64
(
1
), pp.
99
113
.
33.
Bellet
,
R.
,
Cochelin
,
B.
,
Herzog
,
P.
, and
Mattei
,
P.-O.
,
2010
, “
Experimental Study of Targeted Energy Transfer From an Acoustic System to a Nonlinear Membrane Absorber
,”
J. Sound Vib.
,
329
(
14
), pp.
2768
2791
.
34.
Gourdon
,
E.
, and
Lamarque
,
C.
,
2005
, “
Energy Pumping for a Larger Span of Energy
,”
J. Sound Vib.
,
285
(
3
), pp.
711
720
.
35.
Starosvetsky
,
Y.
, and
Gendelman
,
O.
,
2008
, “
Strongly Modulated Response in Forced 2DOF Oscillatory System With Essential Mass and Potential Asymmetry
,”
Physica D
,
237
(
13
), pp.
1719
1733
.
36.
Kuether
,
R.
,
Renson
,
L.
,
Detroux
,
T.
,
Grappasonni
,
C.
,
Kerschen
,
G.
, and
Allen
,
M.
,
2015
, “
Nonlinear Normal Modes, Modal Interactions and Isolated Resonance Curves
,”
J. Sound Vib.
,
351
, pp.
299
310
.
37.
Shao
,
J.
,
Wu
,
X.
, and
Cochelin
,
B.
,
2014
, “
Targeted Energy Transfer in Two Degrees-of-Freedom Linear System Coupled by One Nonlinear Absorber
,”
21st International Congress on Sound and Vibration
, Beijing, China, July 13–17, Paper No. 850.
38.
Karkar
,
S.
,
Cocheliln
,
B.
,
Vergez
,
C.
,
Thomas
,
O.
, and
Lazarus
,
A.
,
2011
, “
ManLab: An Interactive Path-Fllowing and Bifurcation Analysis Software
,” available at: http://manlab.lma.cnrs-mrs.fr
You do not currently have access to this content.