This paper develops H2 modified positive position feedback (H2-MPPF) and H-MPPF controllers for spatial vibration suppression of flexible structures in multimode condition. Resonant vibrations in a clamped–clamped (c–c) and a cantilever beam are aimed to be spatially suppressed using minimum number of piezoelectric patches. These two types of beams are selected since they are more frequently used in macro- and microscale structures. The shape functions of the beams are extracted using the assumed-modes approach. Then, they are implemented in the controller design via spatial H2 and H norms. The controllers are then evaluated experimentally. Vibrations of multiple points on the beams are concurrently measured using a laser vibrometer. According to the results of the c–c beam, vibration amplitude is reduced to less than half for the entire beam using both H2- and H-MPPF controllers. For the cantilever beam, vibration amplitude is suppressed to a higher level using the H2-MPPF controller compared to the H-MPPF method. Results show that the designed controllers can effectively use one piezoelectric actuator to efficiently perform spatial vibration control on the entire length of the beams with different boundary conditions.

References

1.
Kumar
,
R.
,
Singh
,
S. P.
, and
Chandrawat
,
H. N.
,
2007
, “
MIMO Adaptive Vibration Control of Smart Structures With Quickly Varying Parameters: Neural Networks vs Classical Control Approach
,”
J. Sound Vib.
,
307
(
3–5
), pp.
639
661
.10.1016/j.jsv.2007.06.028
2.
Zhang
,
Z.
,
Rustighi
,
E.
, and
Chen
,
Y.
,
2012
, “
Active Control of the Longitudinal–Lateral Vibration of a Shaft-Plate Coupled System
,”
ASME J. Vib. Acoust.
,
134
(
6
), p.
061002
.10.1115/1.4006647
3.
Panda
,
S.
, and
Ray
,
M. C.
,
2012
, “
Active Damping of Nonlinear Vibrations of Functionally Graded Laminated Composite Plates Using Vertically/Obliquely Reinforced 1–3 Piezoelectric Composite
,”
ASME J. Vib. Acoust.
,
134
(
2
), p.
021016
.10.1115/1.4004604
4.
Seigler
,
T. M.
, and
Ghasemi
,
A. H.
,
2012
, “
Specified Motion of Piezoelectrically Actuated Structures
,”
ASME J. Vib. Acoust.
,
134
(
2
), p.
021002
.10.1115/1.4005018
5.
Omidi
,
E.
,
Korayem
,
A. H.
, and
Korayem
,
M. H.
,
2013
, “
Sensitivity Analysis of Nanoparticles Pushing Manipulation by AFM in a Robust Controlled Process
,”
Precis. Eng.
,
37
(
3
), pp.
658
670
.10.1016/j.precisioneng.2013.01.011
6.
Korayem
,
M. H.
, and
Omidi
,
E.
,
2012
, “
Robust Controlled Manipulation of Nanoparticles Using Atomic Force Microscope
,”
Micro Nano Lett.
,
7
(
9
), pp.
927
931
.10.1049/mnl.2012.0293
7.
Collinger
,
J. C.
,
Messner
,
W. C.
, and
Wickert
,
J. A.
,
2012
, “
An Investigation Into Using Magnetically Attached Piezoelectric Elements for Vibration Control
,”
ASME J. Vib. Acoust.
,
134
(
6
) p.
061008
.10.1115/1.4007021
8.
Clark
,
W. W.
,
2000
, “
Vibration Control With State-Switched Piezoelectric Materials
,”
J. Intell. Mater. Syst. Struct.
,
11
(
4
), pp.
263
271
.10.1106/18CE-77K4-DYMG-RKBB
9.
Manzoni
,
S.
,
Moschini
,
S.
, and
Redaelli
,
M.
,
2012
, “
Vibration Attenuation by Means of Piezoelectric Transducer Shunted to Synthetic Negative Capacitance
,”
J. Sound Vib.
,
331
(
21
), pp.
4644
4657
.10.1016/j.jsv.2012.05.014
10.
Mahmoodi
,
S. N.
, and
Ahmadian
,
M.
,
2009
, “
Active Vibration Control With Modified Positive Position Feedback
,”
ASME J. Dyn. Syst. Meas. Contr.
,
131
(
4
), p.
041002
.10.1115/1.3089565
11.
Omidi
,
E.
, and
Mahmoodi
,
S. N.
,
2013
, “
Active Vibration Control of Resonant Systems Via Multivariable Modified Positive Position Feedback
,”
ASME
Paper No. DSCC2013-3910.10.1115/DSCC2013-3910
12.
Omidi
,
E.
,
McCarty
,
R.
, and
Mahmoodi
,
S. N.
,
2014
, “
Implementation of Modified Positive Velocity Feedback Controller for Active Vibration Control in Smart Structures
,”
Proc. SPIE
,
9057
, p.
90571N
.10.1117/12.2044478
13.
Ahmadian
,
M.
, and
Inman
,
D. J.
,
2010
, “
Adaptive Modified Positive Position Feedback for Active Vibration Control of Structures
,”
J. Intell. Mater. Syst. Struct.
,
21
(
6
), pp.
571
580
.10.1177/1045389X10361631
14.
Gibbs
,
G. P.
,
Clark
,
R. L.
, and
Cox
,
D. E.
,
2000
, “
Radiation Modal Expansion: Application to Active Structural Acoustic Control
,”
J. Acoust. Soc. Am.
,
107
(
1
), pp.
332
339
.10.1121/1.428307
15.
Mahmoodi
,
S. N.
,
Craft
,
M. J.
, and
Southward
,
S. C.
,
2011
, “
Active Vibration Control Using Optimized Modified Acceleration Feedback With Adaptive Line Enhancer for Frequency Tracking
,”
J. Sound Vib.
,
330
(
7
), pp.
1300
1311
.10.1016/j.jsv.2010.10.013
16.
Han
,
S. M.
,
Benaroya
,
H.
, and
Wei
,
T.
,
1999
, “
Dynamics of Transversely Vibrating Beams Using Four Engineering Theories
,”
J. Sound Vib.
,
225
(
5
), pp.
935
988
.10.1006/jsvi.1999.2257
17.
Halim
,
D.
, and
Moheimani
,
S. O. R.
,
2001
, “
Spatial Resonant Control of Flexible Structures—Application to a Piezoelectric Laminate Beam
,”
IEEE Trans. Contr. Syst. Technol.
,
9
(
1
), pp.
37
53
.10.1109/87.896744
18.
Clark
,
R. L.
,
1997
, “
Accounting for Out-of-Bandwidth Modes in the Assumed Modes Approach: Implications on Collocated Output Feedback Control
,”
ASME J. Dyn. Syst. Meas. Contr.
,
119
(
3
), pp.
390
395
.10.1115/1.2801270
19.
Colaneri
,
P.
,
Geromel
,
J. C.
, and
Locatelli
,
A.
,
1997
,
Control Theory and Design: An RH2 and RH∞ Viewpoint
,
Academic
,
San Diego, CA
.
20.
Du
,
C.
, and
Xie
,
L.
,
2010
,
Modeling and Control of Vibration in Mechanical Systems
,
CRC Press
,
Boca Raton, FL
.
21.
Zhou
,
K.
,
1998
,
Essentials of Robust Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.