This paper investigates the vibration mode structure of three-dimensional, cyclically symmetric centrifugal pendulum vibration absorber (CPVA) systems. The rotor in the system has two translational, one rotational, and two tilting degrees of freedom. The equations of motion for the three-dimensional model, including the rotor tilting, are derived to study the modes analytically and numerically. Only three mode types exist: rotational, translational-tilting, and absorber modes. The rotational and absorber modes have identical properties to those of in-plane models. Only the translational-tilting modes contain rotor tilting. The veering/crossing behavior between the eigenvalue loci is derived analytically.
Issue Section:
Research Papers
References
1.
Carter
, B. C.
, 1929, “Rotating Pendulum Absorbers With Partly Solid and Partly Liquid Inertia Members With Mechanical or Fluid Damping
,” British Patent No. 337.2.
Den Hartog
, J. P.
, 1938
, “Tuned Pendulums as Torsional Vibration Eliminators
,” Stephen Timoshenko 60th Anniversary Volume
, Macmillan
, New York
, pp. 17
–26
.3.
Lee
, C.-T.
, and Shaw
, S. W.
, 1997
, “The Non-Linear Dynamic Response of Paired Centrifugal Pendulum Vibration Absorbers
,” J. Sound Vib.
, 203
(5
), pp. 731
–743
.10.1006/jsvi.1996.07074.
Chao
, C.-P.
, Lee
, C.-T.
, and Shaw
, S. W.
, 1997
, “Non-Unison Dynamics of Multiple Centrifugal Pendulum Vibration Absorbers
,” J. Sound Vib.
, 204
(5
), pp. 769
–794
.10.1006/jsvi.1997.09605.
Lee
, C.-T.
, Shaw
, S. W.
, and Coppola
, V. T.
, 1997
, “A Subharmonic Vibration Absorber for Rotating Machinery
,” ASME J. Vibr. Acoust.
, 119
(4
), pp. 590
–595
.10.1115/1.28897666.
Chao
, C.-P.
, Shaw
, S. W.
, and Lee
, C.-T.
, 1997
, “Stability of the Unison Response for a Rotating System With Multiple Tautochronic Pendulum Vibration Absorbers
,” ASME J. Appl. Mech.
, 64
(1
), pp. 149
–156
.10.1115/1.27872667.
Chao
, C. P.
, and Shaw
, S. W.
, 1998
, “The Effects of Imperfections on the Performance of the Subharmonic Vibration Absorber System
,” J. Sound Vib.
, 215
(5
), pp. 1065
–1099
.10.1006/jsvi.1998.16348.
Alsuwaiyan
, A. S.
, and Shaw
, S. W.
, 1999
, “Localization of Free Vibration Modes in Systems of Nearly-Identical Vibration Absorbers
,” J. Sound Vib.
, 228
(3
), pp. 703
–711
.10.1006/jsvi.1999.24709.
Chao
, C.-P.
, and Shaw
, S. W.
, 2000
, “The Dynamic Response of Multiple Pairs of Subharmonic Torsional Vibration Absorbers
,” J. Sound Vib.
, 231
(2
), pp. 411
–431
.10.1006/jsvi.1999.272210.
Alsuwaiyan
, A. S.
, and Shaw
, S. W.
, 2002
, “Performance and Dynamic Stability of General Path Centrifugal Pendulum Vibration Absorbers
,” J. Sound Vib.
, 252
(5
), pp. 791
–815
.10.1006/jsvi.2000.353411.
Alsuwaiyan
, A. S.
, and Shaw
, S. W.
, 2003
, “Steady-State Responses in Systems of Nearly-Identical Vibration Absorbers
,” ASME J. Vibr. Acoust.
, 125
(1
), pp. 80
–87
.10.1115/1.152242012.
Vidmar
, B. J.
, Shaw
, S. W.
, Feeny
, B. F.
, and Geist
, B. K.
, 2013
, “Nonlinear Interactions in Systems of Multiple Order Centrifugal Pendulum Vibration Absorbers
,” ASME J. Vibr. Acoust.
, 135
(6
), p. 061012
.10.1115/1.402496913.
Albright
, M.
, Crawford
, T.
, and Speckhart
, F.
, 1994
, “Dynamic Testing and Evaluation of the Torsional Vibration Absorber
,” SAE
Technical Paper 942519.10.4271/94251914.
Nester
, T. M.
, Schmitz
, P. M.
, Haddow
, A. G.
, and Shaw
, S. W.
, 2004
, “Experimental Observations of Centrifugal Pendulum Vibration Absorbers
,” 10th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, March 7–11, Paper No. ISROMAC10-2004-043.15.
Bauchau
, O. A.
, Rodriguez
, J.
, and Chen
, S.-Y.
, 2003
, “Modeling the Bifilar Pendulum Using Nonlinear, Flexible Multibody Dynamics
,” J. Am. Helicopter Soc.
, 48
(1
), pp. 53
–62
.10.4050/JAHS.48.5316.
Cronin
, D. L.
, 1992
, “Shake Reduction in an Automobile Engine by Means of Crankshaft-Mounted Pendulums
,” Mech. Mach. Theory
, 27
(5
), pp. 517
–533
.10.1016/0094-114X(92)90041-F17.
Shi
, C.
, and Parker
, R. G.
, 2012
, “Modal Properties and Stability of Centrifugal Pendulum Vibration Absorber Systems With Equally-Spaced, Identical Absorbers
,” J. Sound Vib.
, 331
(21
), pp. 4807
–4824
.10.1016/j.jsv.2012.05.01818.
Shi
, C.
, and Parker
, R. G.
, 2013
, “Modal Structure of Centrifugal Pendulum Vibration Absorber Systems With Multiple Cyclically Symmetric Groups of Absorbers
,” J. Sound Vib.
, 332
(18
), pp. 4339
–4353
.10.1016/j.jsv.2013.03.00919.
Shi
, C.
, Parker
, R. G.
, and Shaw
, S. W.
, 2013
, “Tuning of Centrifugal Pendulum Vibration Absorbers for Translational and Rotational Vibration Reduction
,” Mech. Mach. Theory
, 66
, pp. 56
–65
.10.1016/j.mechmachtheory.2013.03.00420.
Denman
, H. H.
, 1992
, “Tautochronic Bifilar Pendulum Torsion Absorbers for Reciprocating Engines
,” J. Sound Vib.
, 159
(2
), pp. 251
–277
.10.1016/0022-460X(92)90035-V21.
Miao
, W.
, and Mouzakis
, T.
, 1980
, “Bifilar Analysis Study
,” Vol. 1, NASA Tech. Rep. No. NASA-CR-159227.22.
Sopher
, R.
, Studwell
, R. E.
, Carssarino
, S.
, and Kottapalli
, S. P. R.
, 1982
, “Coupled Rotor/Airframe Vibration Analysis
,” NASA Tech. Rep. No. NASA-CR-3582.23.
Olson
, B. J.
, 2006
, “Order-Tuned Vibration Absorbers for Systems With Cyclic Symmetry With Applications to Turbomachinery
,” Ph.D. thesis, Michigan State University, East Lansing, MI.24.
Kim
, H.
, and Shen
, I. Y.
, 2009
, “Ground-Based Vibration Response of a Spinning, Cyclic, Symmetric Rotor With Gyroscopic and Centrifugal Softening Effects
,” ASME J. Vibr. Acoust.
, 131
(2
), p. 021007
.10.1115/1.302584725.
Eritenel
, T.
, and Parker
, R. G.
, 2009
, “Modal Properties of Three-Dimensional Helical Planetary Gears
,” J. Sound Vib.
, 325
(1-2
), pp. 397
–420
.10.1016/j.jsv.2009.03.00226.
Perkins
, N. C.
, and Mote
, Jr., C. D.
, 1986
, “Comments on Curve Veering in Eigenvalue Problems
,” J. Sound Vib.
, 106
(3
), pp. 451
–463
.10.1016/0022-460X(86)90191-427.
Lin
, J.
, and Parker
, R. G.
, 2001
, “Natural Frequency Veering in Planetary Gears
,” Mech. Struct. Mach.
, 29
(4
), pp. 411
–429
.10.1081/SME-10010762028.
Cooley
, C. G.
, and Parker
, R. G.
, 2012
, “Vibration Properties of High-Speed Planetary Gears With Gyroscopic Effects
,” ASME J. Vibr. Acoust.
, 134
(6
), p. 061014
.10.1115/1.400664629.
Meirovitch
, L.
, 1974
, “A New Method of Solution of the Eigenvalue Problem for Gyroscopic Systems
, AIAA J.
, 12
(10
), pp. 1337
–1342
.10.2514/3.4948630.
Meirovitch
, L.
, 1975
, “A Modal Analysis for the Response of Linear Gyroscopic Systems
,” ASME J. Appl. Mech.
, 42
(2
), pp. 446
–450
.10.1115/1.342359731.
D'Eleuterio
, G. M. T.
, and Hughes
, P. C.
, 1984
, “Dynamics of Gyroelastic Continua
,” ASME J. Applied Mech.
, 51
(2
), pp. 415
–422
.10.1115/1.316763432.
Stakgold
, I.
, 1979
, Green's Functions and Boundary Value Problems
, Wiley
, New York
.Copyright © 2014 by ASME
You do not currently have access to this content.