Mechanical systems including conveyor belts, band saw blades, and power transmission belts are influenced by the lateral motion of the moving structure. This phenomenon was studied in the literature both using the theory of the continuous linear and nonlinear systems and following the multibody technique. The subject is studied by using the finite element method (FEM) validated with reference to the analytical models described in the literature. The contributions of the Coriolis forces, the negative stiffness linked to the transport speed, and the bending stiffness due to the transverse moment of inertia are discussed. The dynamic behavior of a prototypical belt transmission layout with two fixed pulleys and an automatic tensioner is then analyzed. The results show the effect of the transport speed on the reduction of the flexural natural frequencies of the mode shapes strictly related to the lateral motion of the belt span and evidence the design strategy that needs to be followed for a correct operation of the whole system.

References

1.
Skutch
,
R.
,
1897
, “
Uber die Bewegungeines Gespannten Fadens (On the Motion of a Tensioned String)
,”
Ann. Phys. Chem.
,
61
, pp.
190
195
.
2.
Sack
,
R. A.
,
1954
, “
Transverse Oscillations in Traveling Strings
,”
Br. J. Appl. Phys.
,
5
, pp.
224
226
.10.1088/0508-3443/5/6/307
3.
Wickert
,
J. A.
, and
Mote
,
C. D.
,
1988
, “
Current Research on the Vibration and Stability of Axially-Moving Materials
,”
Shock Vib. Dig.
,
20
(
5
), pp.
3
13
.10.1177/058310248802000503
4.
Wickert
,
J. A.
, and
Mote
,
C. D.
,
1988
, “
On the Energetics of Axially Moving Continua
,”
J. Acoust. Soc. Am.
,
85
(
3
), pp.
1365
1368
.10.1121/1.397418
5.
Wickert
,
J. A.
, and
Mote
,
C. D.
,
1990
, “
Classical Vibration Analysis of Axially Moving Continua
,”
ASME J. Appl. Mech.
,
57
, pp.
738
744
.10.1115/1.2897085
6.
Wickert
,
J. A.
, and
Mote
,
C. D.
,
1991
, “
Response and Discretization Methods for Axially Moving Materials
,”
ASME Appl. Mech. Rev.
,
44
(
11
), pp.
S279
S284
.10.1115/1.3121365
7.
Wickert
,
J. A.
,
1991
, “
Travelling Load Response of an Axially Moving String
,”
J. Sound Vib.
,
149
(
2
), pp.
267
284
.10.1016/0022-460X(91)90636-X
8.
Wickert
,
J. A.
, and
Mote
,
C. D.
,
1988
, “
Linear Transverse Vibration of an Axially Moving String–Particle System
,”
J. Acoust. Soc. Am.
,
84
(
3
), pp.
963
969
.10.1121/1.396611
9.
Hwang
,
S. J.
,
Perkins
,
N. C.
,
Ulsoy
,
A. G.
, and
Meckstroth
,
R. J.
,
1994
, “
Rotational Response and Slip Prediction of Serpentine Belt Drive Systems
,”
ASME J. Vibr. Acoust.
,
116
, pp.
71
78
.10.1115/1.2930400
10.
Beikmann
,
R. S.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
,
1996
, “
Free Vibration of Serpentine Belt Drive Systems
,”
ASME J. Vibr. Acoust.
,
118
, pp.
406
413
.10.1115/1.2888197
11.
Beikmann
,
R. S.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
,
1996
, “
Nonlinear Coupled Vibration Response of Serpentine Belt Drive Systems
,”
ASME J. Vibr. Acoust.
,
118
, pp.
567
574
.10.1115/1.2888336
12.
Zhang
,
L.
, and
Zu
,
J. W.
,
1999
, “
Modal Analysis of Serpentine Belt Drive System
,”
J. Sound Vib.
,
222
(
2
), pp.
259
279
.10.1006/jsvi.1998.2078
13.
Zhang
,
L.
,
Zu
,
J. W.
, and
Hou
,
Z.
,
2001
, “
Complex Modal Analysis of Non-Self-Adjoint Hybrid Serpentine Belt Drive Systems
,”
ASME J. Vibr. Acoust.
,
123
, pp.
150
156
.10.1115/1.1356697
14.
Brake
,
M. R.
, and
Wickert
,
J. A.
,
2010
, “
Modal Analysis of Continuous Gyroscopic Second-Order System With Nonlinear Constraints
,”
J. Sound Vib.
,
329
, pp.
893
911
.10.1016/j.jsv.2009.10.004
15.
Kong
,
L.
, and
Parker
,
R. G.
,
2003
, “
Equilibrium and Belt-Pulley Vibration Coupling in Serpentine Belt Drives
,”
ASME J. Appl. Mech.
,
70
, pp.
739
750
.10.1115/1.1598477
16.
Kong
,
L.
, and
Parker
,
R. G.
,
2004
, “
Coupled Belt-Pulley Vibration in Serpentine Drives With Belt Bending Stiffness
,”
ASME J. Appl. Mech.
,
71
, pp.
109
119
.10.1115/1.1641064
17.
Lin
,
Y.
,
DePauw
,
T.
, and
Jiang
,
Y.
,
1997
, “
Analysis of the Dynamic Effects of an Elastic Belt in a General Mechanical System
,”
Proceedings of the 12th European ADAMS User's Conference
, Marburg, Germany, November 18–19, pp.
1
9
.
18.
Hashimoto
,
Y.
,
2007
, “
Finite Element Vibration Analysis of Axially Moving Belt
,”
Trans. Jpn. Soc. Mech. Eng., Ser. C
,
73
, pp.
655
660
.10.1299/kikaic.73.655
19.
Amati
,
N.
,
Tonoli
,
A.
, and
Zenerino
,
E.
,
2005
, “
Dinamica Flessionale di Sistemi Continui Traslanti: Modellazione Agli Elementi Finiti (Flexural Dynamics of Continuum Translating Systems: Finite Element Modeling)
,”
Proceedings of the 34th Convegno Nazionale AIAS
, Milano, Italy, September 14–17, pp.
1
10
.
20.
Zen
,
G.
, and
Muftu
,
G.
,
2006
, “
Stability of an Axially Accelerating String Subjected to Frictional Guiding Forces
,”
J. Sound Vib.
,
289
, pp.
551
576
.10.1016/j.jsv.2005.02.026
21.
Przemieniecki
,
J. S.
,
1968
,
Theory of Matrix Structural Analysis
,
McGraw-Hill
,
New York
.
22.
Genta
,
G.
,
1999
,
Vibration of Structures and Machines: Practical Aspects
,
Springer
,
New York
.
23.
Belingardi
G.
,
1995
,
Il Metodo Degli Elementi Finiti Nella Progettazione Meccanica (The Finite Elemet Method in Machine Design)
,
Levrotto and Bella
,
Torino
.
24.
Genta
,
G.
, and
Tonoli
,
A.
,
1996
, “
A Harmonic Finite Element for the Analysis of Flexural, Torsional and Axial Rotordynamic Behaviour of Discs
,”
J. Sound Vib.
,
196
, pp.
13
43
.10.1006/jsvi.1996.0465
25.
Perkins
,
N. C.
, and
Mote
,
C. D.
,
1986
, “
Comments on the Curve Veering in Engineering Problems
,”
J. Sound Vib.
,
106
, pp.
451
463
.10.1016/0022-460X(86)90191-4
26.
Amati
,
N.
,
Tonoli
,
A.
, and
Zenerino
,
E.
,
2006
, “
Dynamic Modeling of Belt Drive Systems: Effects of the Shear Deformations
,”
ASME J. Vibr. Acoust.
,
128
, pp.
555
567
.10.1115/1.2202153
You do not currently have access to this content.