Energy harvesting devices designed with intentional nonlinearities offer the possibility of increased performance under broadband excitations and realistic environmental conditions. This work considers an energy harvesting system based on the response of an attachment with strong nonlinear behavior. The electromechanical coupling is achieved with a piezoelectric element across a resistive load. When the system is subject to harmonic excitation, the harvested power from the nonlinear system exhibits a wider interval of frequencies over which the harvested power is significant, although an equivalent linear device offers greater efficiency at its design frequency. However, for impulsive excitation, the performance of the nonlinear harvesting system exceeds the corresponding linear system in terms of both magnitude of power harvested and the frequency interval over which significant power can be drawn from the mechanical vibrations.

1.
Roundy
,
S.
,
Wright
,
P. K.
, and
Rabaey
,
J.
, 2003, “
A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes
,”
Comput. Commun.
0140-3664,
26
, pp.
1131
1144
.
2.
Erturk
,
A.
, and
Inman
,
D. J.
, 2008, “
On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
19
, pp.
1311
1325
.
3.
Cottone
,
F.
,
Vocca
,
H.
, and
Gammaitoni
,
L.
, 2009, “
Nonlinear Energy Harvesting
,”
Phys. Rev. Lett.
0031-9007,
102
, p.
080601
.
4.
Vakakis
,
A. F.
,
Gendelman
,
O.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Kerschen
,
G.
, and
Lee
,
Y. S.
, 2008,
Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems: I and II
,
Springer-Verlag
,
Berlin
.
5.
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
, 2005, “
Experimental study of Nonlinear Energy Pumping Occurring at a Single Fast Frequency
,”
Int. J. Non-Linear Mech.
0020-7462,
40
(
6
), pp.
891
899
.
6.
Manevitch
,
L. I.
,
Musienko
,
A. I.
, and
Lamarque
,
C. -H.
, 2007, “
New Analytical Approach to Energy Pumping Problem in Strongly Nonhomogeneous 2dof Systems
,”
Meccanica
0025-6455,
42
, pp.
77
83
.
7.
Quinn
,
D. D.
,
Gendelman
,
O.
,
Kerschen
,
G.
,
Sapsis
,
T. P.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
, 2008, “
Efficiency of Targeted Energy Transfers in Coupled Nonlinear Oscillators Associated With 1:1 Resonance Capture: Part I
,”
J. Sound Vib.
0022-460X,
311
, pp.
1228
1248
.
8.
Kerschen
,
G.
,
McFarland
,
D. M.
,
Kowtko
,
J. J.
,
Lee
,
Y. S.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
, 2007, “
Experimental Demonstration of Transient Resonance Capture in a System of Two Coupled Oscillators With Essential Stiffness Nonlinearity
,”
J. Sound Vib.
0022-460X,
299
, pp.
822
838
.
9.
Gourdon
,
E.
,
Alexander
,
N. A.
,
Taylor
,
C. A.
,
Lamarque
,
C. H.
, and
Pernot
,
S.
, 2007, “
Nonlinear Energy Pumping Under Transient Forcing With Strongly Nonlinear Coupling: Theoretical and Experimental Results
,”
J. Sound Vib.
0022-460X,
300
, pp.
522
551
.
10.
Bellet
,
R.
,
Cochelin
,
B.
,
Herzog
,
P.
, and
Mattei
,
P. -O.
, 2010, “
Experimental Study of Targeted Energy Transfer From an Acoustic System to a Nonlinear Membrane Absorber
,”
J. Sound Vib.
0022-460X,
329
, pp.
2768
2791
.
11.
Roundy
,
S.
, 2005, “
On the Effectiveness of Vibration-Based Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
16
, pp.
809
823
.
12.
Lesieutre
,
G. A.
,
Ottman
,
G. K.
, and
Hofmann
,
H. F.
, 2004, “
Damping as a Result of Piezoelectric Energy Harvesting
,”
J. Sound Vib.
0022-460X,
269
, pp.
991
1001
.
13.
Glynne-Jones
,
P.
,
Tudor
,
M. J.
,
Beeby
,
S. P.
, and
White
,
N. M.
, 2004, “
An Electromagnetic, Vibration-Powered Generator for Intelligent Sensor Systems
,”
Sens. Actuators, A
0924-4247,
110
, pp.
344
349
.
14.
Sodano
,
H. A.
,
Inman
,
D. J.
, and
Park
,
G.
, 2004, “
A Review of Power Harvesting From Vibration Using Piezoelectric Materials
,”
Shock Vib. Dig.
0583-1024,
36
(
3
), pp.
197
205
.
15.
Sodano
,
H. A.
,
Inman
,
D. J.
, and
Park
,
G.
, 2005, “
Generation and Storage of Electricity From Power Harvesting Devices
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
16
, pp.
67
75
.
16.
Quinn
,
D. D.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
, 2007, “
Vibration-Based Energy Harvesting With Essential Nonlinearities
,”
ASME
Paper No. DETC2007-35457.
17.
Mann
,
B. P.
, and
Sims
,
N. D.
, 2009, “
Energy Harvesting From The Nonlinear Oscillations of Magnetic Levitation
,”
J. Sound Vib.
0022-460X,
319
, pp.
515
530
.
18.
Erturk
,
A.
,
Hoffmann
,
J.
, and
Inman
,
D. J.
, 2009, “
A Piezomagnetoelastic Structure for Broadband Vibration Energy Harvesting
,”
Appl. Phys. Lett.
0003-6951,
94
, p.
254102
.
19.
Ramlan
,
R.
,
Brennan
,
M. J.
,
Mace
,
B. R.
, and
Kovacic
,
I.
, 2010, “
Potential Benefits of a Non-Linear Stiffness in an Energy Harvesting Device
,”
Nonlinear Dyn.
0924-090X,
59
, pp.
545
558
.
20.
Marinkovic
,
B.
, and
Koser
,
H.
, 2009, “
Smart Sand—A Wide Bandwidth Vibration Energy Harvesting Platform
,”
Appl. Phys. Lett.
0003-6951,
94
, p.
103505
.
21.
Stanton
,
S. C.
,
McGehee
,
C. C.
, and
Mann
,
B. P.
, 2010, “
Nonlinear Dynamics for Broadband Energy Harvesting: Investigation of a Bistable Piezoelectric Inertial Generator
,”
Physica D
0167-2789,
239
, pp.
640
653
.
22.
du Toit
,
N. E.
, and
Wardle
,
B. L.
, 2007, “
Experimental Verification of Models for Microfabricated Piezoelectric Vibration Energy Harvesters
,”
AIAA J.
0001-1452,
45
(
5
), pp.
1126
1137
.
23.
Liao
,
Y.
, and
Sodano
,
H. A.
, 2008, “
Model of a Single Mode Energy Harvester and Properties for Optimal Power Generation
,”
Smart Mater. Struct.
0964-1726,
17
, pp.
065026
.
24.
Anderson
,
D. K.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
, 2010, “
Dynamics of a System of Coupled Oscillators With Geometrically Nonlinear Damping
,”
28th International Modal Analysis Conference (IMAC-XXVIII)
, Jacksonville, FL, Feb. 1–4.
You do not currently have access to this content.