Abstract
Recently, research on new techniques for single-chamber mufflers equipped with perforated resonating tubes has been addressed. However, the acoustical performance of mufflers having a narrow-band sound transmission loss (STL) is insufficient in reducing a broadband venting noise. To improve the acoustical efficiency, a hybrid muffler with chambers composed of perforated intruding inlets is presented. Here, we will not only analyze the STL of three kinds of mufflers (A: a one-chamber muffler hybridized with a perforated resonating tube; B: a two-chamber muffler hybridized with a perforated intruding tube and a resonating tube; and C: a three-chamber muffler hybridized with two perforated intruding tubes and a resonating tube), but also optimize the best design shape within a space-constrained situation. In this paper, both the numerical decoupling technique and simulated annealing (SA) for solving the coupled acoustical problem of perforated tubes are used. A numerical case for eliminating a broadband air compressor noise is also introduced. To verify the reliability of SA optimization, optimal noise abatements for the pure tones (400 Hz and 800 Hz) are exemplified. Before the SA operation can be carried out, the accuracy of the mathematical model is checked using the experimental data. Results indicate that the maximal STL is precisely located at the desired target tones. The optimal result of case studies for eliminating broadband noise also reveals that the overall noise reduction with respect to the mufflers can be reduced from 131.6 dB(A) to 102.1 dB(A), 89.5 dB(A), and 82.1 dB(A). As can be seen, the acoustical performance will increase when the diameters (at the inlet tubes as well as perforated holes) decrease. Moreover, it is obvious that the acoustical performance will be improved when the chambers equipped with perforated intruding inlets are increased. Consequently, a successful approach used for the optimal design of the multichamber mufflers equipped with perforated intruding tubes and a resonating tube within a space-constrained condition has been demonstrated.