This paper first introduces the effects of various frictional models on the dynamic behaviors of a simple mechanical system with frictional forces, which are described by the Leuven model combined with the Bouc-Wen model of the hysteresis. The frictional model allows accurate dynamic modeling both in the sliding and the presliding regimes without using switching functions. Secondly, these analytic results are applied to the precise positioning impact drive mechanism (IDM) and make the frictional actions more accurate. The hysteresis effect is also considered in the piezoelectric force of the IDM. It is shown that the hysteresis frictional force has critical influence on the final position of the micro- and nanometer positioning.

1.
Armstrong-Hélouvry
,
B.
,
Dupont
,
P.
, and
Canudas de Wit
,
C.
, 1994, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction
,”
Automatica
0005-1098,
30
(
7
), pp.
1083
1138
.
2.
Canudas de Wit
,
C.
,
Olsson
,
H.
,
Aström
,
K.
, and
Lishinsky
,
P.
, 1995, “
A New Model for Control of Systems with Friction
,”
IEEE Trans. Autom. Control
0018-9286,
40
, pp.
419
425
.
3.
Swevers
,
J.
,
Al-Bender
,
F.
,
Ganseman
,
G.
, and
Prajogo
,
T.
, 2000, “
An Integrated Friction Model Structure with Improved Presliding Behavior for Accurate Frictional Compensation
,”
IEEE Trans. Autom. Control
0018-9286,
45
, pp.
675
686
.
4.
Zhang
,
H.
,
Higuchi
,
T.
,
Nishioki
,
N.
, 1997, “
Dual Tunneling-Unit Scanning Tunneling Microscope for Length Measurement Based on Crystalline Lattice
,”
J. Vac. Sci. Technol. B
0734-211X,
15
, pp.
174
177
.
5.
Furutani
,
K.
,
Urushibata
,
M.
,
Enami
,
T.
, and
Mohri
,
N.
, 1998, “
A Linear Drive Mechanism for Dot-Matrix Electrical Discharge Machining
,” in
Proceedings of the Fourth Japan-France Congress and 2nd Asia-Europe Congress on Mechatronics
, pp.
96
101
.
6.
Yamagata
,
Y.
, and
Higuchi
,
T.
, 1990, “
Ultrahigh Vacuum Precise Positioning Device Utilizing Rapid Deformations of Piezoelectric Elements
,”
J. Vac. Sci. Technol. A
0734-2101,
8
, pp.
89
91
.
7.
Fukui
,
R.
,
Torii
,
A.
, and
Ueda
,
A.
, 2001, “
Micro Robot Actuated by Rapid Deformation of Piezoelectric Elements
,”
International Symposium on Micromechatronics and Human Science
, pp.
117
122
.
8.
Catalog,
Piezopecker
,
Chichibu Onoda Corp.
, Japan.
9.
Higuchi
,
T.
,
Furutani
,
K.
,
Yamagata
,
Y.
,
Kudoh
,
K.
, and
Ogawa
,
M.
, 1993, “
Improvement of Velocity of Impact Drive Mechanism by Controlling Friction
,”
J. Adv. Automat. Tech.
,
5
(
2
), pp.
71
76
.
10.
Furutani
,
K.
,
Higuchi
,
T.
,
Yamagata
,
Y.
, and
Mohri
,
N.
, 1998, “
Effect of Lubrication on Impact Drive Mechanism
,”
Precis. Eng.
0141-6359,
22
, pp.
78
86
.
11.
Karnopp
,
D.
, 1985, “
Computer Simulation of Stick-Slip in Mechanical Dynamic System
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
107
, pp.
100
103
.
12.
Cao
,
L.
, and
Schwartz
,
H. M.
, 2000, “
Stick-Slip Friction Compensation for PID Position Control
,” in
Proceedings of the American Control Conference
, pp.
1078
1082
.
13.
Futami
,
S.
,
Furutani
,
A.
, and
Yoshida
,
S.
, 1990, “
Nanometer Positioning and its Microdynamics
,”
Nanotechnology
0957-4484,
1
,
1
, pp.
31
37
.
14.
Rogers
,
P. F.
, and
Boothroyd
,
G.
, 1975, “
Damping at Metallic Interfaces Subjected to Oscillating Tangential Loads
,”
ASME J. Eng. Ind.
0022-0817,
97
, pp.
1087
1093
.
15.
Lampaert
,
V.
,
Swevers
,
J.
, and
Al-Bender
,
F.
, 2002, “
Modification of the Leuven Integrated Friction Model Structure
,”
IEEE Trans. Autom. Control
0018-9286,
47
(
4
), pp.
683
687
.
16.
Low
,
T. S.
, and
Guo
,
W.
, 1995, “
Modeling of Three-Layer Piezoelectric Bimorph Beam With Hysteresis
,”
J. Microelectromech. Syst.
1057-7157,
4
(
4
), pp.
230
237
.
17.
Liu
,
Y. T.
,
Higuchi
,
T.
, and
Fung
,
R. F.
, 2003, “
A Novel Precision Positioning Table Utilizing Impact Force of Spring-Mounted Piezoelectric Actuator. Part I. Experimental Design and Results
,”
Precis. Eng.
0141-6359,
27
, pp.
14
21
.
18.
Liu
,
Y. T.
,
Higuchi
,
T.
, and
Fung
,
R. F.
, 2003, “
A Novel Precision Positioning Table Utilizing Impact Force of Spring-Mounted Piezoelectric Actuator. Part II. Theoretical Analysis
,”
Precis. Eng.
0141-6359,
27
, pp.
22
31
.
19.
Liu
,
Y. T.
, and
Wang
,
C. W.
, 2002, “
A Self-Moving Precision Positioning Stage Utilizing Impact Force of Spring-Mounted Piezoelectric Actuator
,”
Sens. Actuators, A
0924-4247,
102
, pp.
83
92
.
20.
Fung
,
R. F.
,
Liu
,
Y. T.
, and
Huang
,
T. K.
, 2003, “
Dynamic Responses of a Self-Moving Precision Positioning Stage Impacted by a Spring-Mounted Piezoelectric Actuator
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
125
, pp.
658
661
.
21.
Jiang
,
T. Y.
,
Ng
,
T. Y.
, and
Lam
,
K. Y.
, 2000, “
Optimization of a Piezoelectric Ceramic Actuator
,”
Sens. Actuators, A
0924-4247,
84
, pp.
81
94
.
You do not currently have access to this content.