This paper first introduces the effects of various frictional models on the dynamic behaviors of a simple mechanical system with frictional forces, which are described by the Leuven model combined with the Bouc-Wen model of the hysteresis. The frictional model allows accurate dynamic modeling both in the sliding and the presliding regimes without using switching functions. Secondly, these analytic results are applied to the precise positioning impact drive mechanism (IDM) and make the frictional actions more accurate. The hysteresis effect is also considered in the piezoelectric force of the IDM. It is shown that the hysteresis frictional force has critical influence on the final position of the micro- and nanometer positioning.
Issue Section:
Technical Papers
1.
Armstrong-Hélouvry
, B.
, Dupont
, P.
, and Canudas de Wit
, C.
, 1994, “A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction
,” Automatica
0005-1098, 30
(7
), pp. 1083
–1138
.2.
Canudas de Wit
, C.
, Olsson
, H.
, Aström
, K.
, and Lishinsky
, P.
, 1995, “A New Model for Control of Systems with Friction
,” IEEE Trans. Autom. Control
0018-9286, 40
, pp. 419
–425
.3.
Swevers
, J.
, Al-Bender
, F.
, Ganseman
, G.
, and Prajogo
, T.
, 2000, “An Integrated Friction Model Structure with Improved Presliding Behavior for Accurate Frictional Compensation
,” IEEE Trans. Autom. Control
0018-9286, 45
, pp. 675
–686
.4.
Zhang
, H.
, Higuchi
, T.
, Nishioki
, N.
, 1997, “Dual Tunneling-Unit Scanning Tunneling Microscope for Length Measurement Based on Crystalline Lattice
,” J. Vac. Sci. Technol. B
0734-211X, 15
, pp. 174
–177
.5.
Furutani
, K.
, Urushibata
, M.
, Enami
, T.
, and Mohri
, N.
, 1998, “A Linear Drive Mechanism for Dot-Matrix Electrical Discharge Machining
,” in Proceedings of the Fourth Japan-France Congress and 2nd Asia-Europe Congress on Mechatronics
, pp. 96
–101
.6.
Yamagata
, Y.
, and Higuchi
, T.
, 1990, “Ultrahigh Vacuum Precise Positioning Device Utilizing Rapid Deformations of Piezoelectric Elements
,” J. Vac. Sci. Technol. A
0734-2101, 8
, pp. 89
–91
.7.
Fukui
, R.
, Torii
, A.
, and Ueda
, A.
, 2001, “Micro Robot Actuated by Rapid Deformation of Piezoelectric Elements
,” International Symposium on Micromechatronics and Human Science
, pp. 117
–122
.8.
Catalog,
Piezopecker
, Chichibu Onoda Corp.
, Japan.9.
Higuchi
, T.
, Furutani
, K.
, Yamagata
, Y.
, Kudoh
, K.
, and Ogawa
, M.
, 1993, “Improvement of Velocity of Impact Drive Mechanism by Controlling Friction
,” J. Adv. Automat. Tech.
, 5
(2
), pp. 71
–76
.10.
Furutani
, K.
, Higuchi
, T.
, Yamagata
, Y.
, and Mohri
, N.
, 1998, “Effect of Lubrication on Impact Drive Mechanism
,” Precis. Eng.
0141-6359, 22
, pp. 78
–86
.11.
Karnopp
, D.
, 1985, “Computer Simulation of Stick-Slip in Mechanical Dynamic System
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 107
, pp. 100
–103
.12.
Cao
, L.
, and Schwartz
, H. M.
, 2000, “Stick-Slip Friction Compensation for PID Position Control
,” in Proceedings of the American Control Conference
, pp. 1078
–1082
.13.
Futami
, S.
, Furutani
, A.
, and Yoshida
, S.
, 1990, “Nanometer Positioning and its Microdynamics
,” Nanotechnology
0957-4484, 1
, 1
, pp. 31
–37
.14.
Rogers
, P. F.
, and Boothroyd
, G.
, 1975, “Damping at Metallic Interfaces Subjected to Oscillating Tangential Loads
,” ASME J. Eng. Ind.
0022-0817, 97
, pp. 1087
–1093
.15.
Lampaert
, V.
, Swevers
, J.
, and Al-Bender
, F.
, 2002, “Modification of the Leuven Integrated Friction Model Structure
,” IEEE Trans. Autom. Control
0018-9286, 47
(4
), pp. 683
–687
.16.
Low
, T. S.
, and Guo
, W.
, 1995, “Modeling of Three-Layer Piezoelectric Bimorph Beam With Hysteresis
,” J. Microelectromech. Syst.
1057-7157, 4
(4
), pp. 230
–237
.17.
Liu
, Y. T.
, Higuchi
, T.
, and Fung
, R. F.
, 2003, “A Novel Precision Positioning Table Utilizing Impact Force of Spring-Mounted Piezoelectric Actuator. Part I. Experimental Design and Results
,” Precis. Eng.
0141-6359, 27
, pp. 14
–21
.18.
Liu
, Y. T.
, Higuchi
, T.
, and Fung
, R. F.
, 2003, “A Novel Precision Positioning Table Utilizing Impact Force of Spring-Mounted Piezoelectric Actuator. Part II. Theoretical Analysis
,” Precis. Eng.
0141-6359, 27
, pp. 22
–31
.19.
Liu
, Y. T.
, and Wang
, C. W.
, 2002, “A Self-Moving Precision Positioning Stage Utilizing Impact Force of Spring-Mounted Piezoelectric Actuator
,” Sens. Actuators, A
0924-4247, 102
, pp. 83
–92
.20.
Fung
, R. F.
, Liu
, Y. T.
, and Huang
, T. K.
, 2003, “Dynamic Responses of a Self-Moving Precision Positioning Stage Impacted by a Spring-Mounted Piezoelectric Actuator
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 125
, pp. 658
–661
.21.
Jiang
, T. Y.
, Ng
, T. Y.
, and Lam
, K. Y.
, 2000, “Optimization of a Piezoelectric Ceramic Actuator
,” Sens. Actuators, A
0924-4247, 84
, pp. 81
–94
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.