Certain ferroelectric materials possess dual electrostrictive and piezoelectric characteristics, depending on their specific Curie temperatures. The nonlinear electro-mechanical effect of electrostrictive materials provides stronger actuation performance as compared with that of piezoelectric materials. Due to the complexity of the generic ferroelectric actuators, micro-electromechanics, structure-electronic (structronic) coupling and control characteristics of hybrid electrostrictive/piezoelectric dynamic systems deserve an in-depth investigation. In this study, dynamic electro-mechanical system equations and boundary conditions of hybrid electrostrictive/piezoelectric double-curvature shell continua are derived using the energy-based Hamilton’s principle, elasticity theory, electrostrictive/piezoelectric constitutive relations, and Gibb’s free energy function. These governing equations clearly reveal the coupling of electrostrictive, piezoelectric, and elastic fields and characteristics change triggered by the Curie temperature. The electric terms are used to manipulate and to control the static/dynamic behavior of hybrid electrostrictive/piezoelectric shells. To apply the hybrid shell system equations to other geometries, simplification procedures using two Lamé parameters and two radii of curvature are demonstrated in two cases: A hybrid electrostrictive/piezoelectric conical shell and a hybrid electrostrictive/piezoelectric toroidal shell. Following the same procedures, one can apply the generic system equations to other common geometries, e.g., beams, arches, plates, rings, cylindrical shells, spherical shells, etc., or specific materials, e.g., electrostrictive or piezoelectric, and further evaluate their electromechanical characteristics and actuation/control effectiveness.

1.
Tzou
,
H. S.
, and
Gabbert
,
U.
, 1997, “
Structronics—A New Discipline and Its Challenging Issues
,” Fortschritt-Berichte VDI, Smart Mechanical Systems—Adaptronics, Reihe 11: Schwingungstechnik Nr. 244, pp.
245
250
.
2.
Zhong
,
J. P
, 1991,
A Study on Piezoelectric Shell Dynamics Applied to Distributed Structural Identification and Control
, Ph.D. dissertation,
The University of Kentucky
.
3.
Tzou
,
H. S.
, and
Howard
,
R. V.
, 1994, “
A Piezothermoelastic Thin Shell Theory Applied to Active Structures
,”
ASME J. Vibr. Acoust.
0739-3717,
116
(
3
), pp.
295
302
.
4.
Tzou
,
H. S.
, and
Bao
,
Y.
, 1995, “
A Theory on Anisotropic Piezothermoelastic Shell Laminates with Sensor/Actuator Applications
,”
J. Sound Vib.
0022-460X,
184
(
3
), pp.
453
473
.
5.
Tzou
,
H. S.
,
Bao
,
Y.
, and
Zhou
,
Y.
, 1997, “
Nonlinear Piezothermoelasticity and Multi-Field Actuations, Part-1: Nonlinear Anisotropic Piezothermoelastic Shell Laminates; Part-2: Control of Nonlinear Buckling and Dynamics
,”
ASME J. Vibr. Acoust.
0739-3717,
119
, pp.
374
389
.
6.
Tzou
,
H. S.
, and
Yang
,
R. J.
, 2000, “
Nonlinear Piezothermoelastic Shell Theory Applied to Control of Variable-Geometry Shells
,”
Pol. Soc. Theor Appl. Mech.
,
38
, pp.
623
644
.
7.
Devonshire
,
A. F.
, 1954, “
Advances in Physics
,”
Philos. Mag.
0031-8086,
3
(
10
), pp.
86
130
.
8.
Tzou
,
H. S.
, and
Chai
,
W. K.
, 2002, “
Constitutive Modeling of Controllable Electrostrictive Thin Shell Structure
,”
7th Biannual Symposium on Active Control of Vibration and Noise - ASME IMECE 2002
,
New Orleans
, LA, Nov.17–22.
9.
Hom
,
C. L.
, and
Shankar
,
N.
, 1994, “
A Fully Coupled Constitutive Model for Electrostrictive Ceramic Materials
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
1
, pp.
795
801
.
10.
Hom
,
C. L.
,
Pilgrim
,
S. M.
,
Shankar
,
M.
,
Bridger
,
K.
,
Massuda
,
M.
, and
Winzer
,
S. R.
, 1994, “
Calculation of Quasi-Static Electromechanical Coupling Coefficient for Electrostrictive Ceramics Materials
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
41
(
4
), pp.
542
551
.
11.
Fripp
,
M.
,
Hagood
,
N.
, and
Luoma
,
L.
, 1994, “
Distributed Structural Actuation with Electrostrictors
,”
Proceedings of the 1994 Smart Structures and Materials Conference
, Orlando, FL, February 14–16,
N.
Hagood
, ed.,
SPIE 2190
, pp.
571
585
.
12.
Sundar
,
V.
, 1994, “
Anisotropy in Electrostriction and Elasticity
,”
J. Mater. Sci. Lett.
0261-8028,
13
(
11
), pp.
799
801
.
13.
Sundar
,
V.
,
Yimnirun
,
R.
,
Aitken
,
B. G.
, and
Newnham
,
R. E.
, 1998, “
Structure-property Relationships in the Electrostriction Response of Low Dielectric Permittivity Silicate Glasses
,”
Mater. Res. Bull.
0025-5408,
33
(
9
), pp.
1307
1314
.
14.
Shkel
,
M. Y.
, and
Klingenberg
,
D. L.
, 1996, “
Material Parameter for Electrostriction
,”
J. Appl. Phys.
0021-8979,
80
(
8
), pp.
4566
4572
.
15.
Newnham
,
R. E.
,
Sundar
,
V.
,
Yimnirun
,
R.
,
Su
,
J.
, and
Zhang
,
Q. M.
, 1997, “
Electrostriction: Nonlinear Electromechanical Coupling in Solid Dielectrics
,”
J. Phys. Chem. B
1089-5647,
101
, pp.
10141
10150
.
16.
Eury
,
S.
,
Yimnirun
,
R.
,
Sundar
,
V.
,
Moses
,
P. J.
,
Jang
,
S. J.
, and
Newnham
,
R. E.
, 1999, “
Converse Electrostriction in Polymers and Composites
,”
Mater. Chem. Phys.
0254-0584,
61
, pp.
18
23
.
17.
Uchino
,
K.
, 2000,
Ferroelectric Devices
,
Marcel Dekker
,
New York
.
18.
Tzou
,
H. S.
, 1998, “
Multi-field Transducers, Devices, Mechatronic Systems and Structronic Systems with Smart Materials
,”
Shock Vib. Dig.
0583-1024,
30
(
4
), pp.
282
294
.
19.
Kyokane
,
J.
,
Ishimoto
,
H.
,
Yugen
,
H.
,
Hirai
,
T.
,
Ueda
,
T.
, and
Yoshino
,
K.
, 1999, “
Electro-striction Effect of Polyurethane Elastomer (PUE) and Its Application to Actuators
,”
Synth. Met.
0379-6779,
103
(
1-3
), pp.
2366
2367
.
20.
Mason
,
W. P.
, 1958,
Physical Acoustics And The Properties of Solids
,
Van Nostrand
,
New York
.
21.
Blackwood
,
G. H.
, and
Ealey
,
M. A.
, 1993, “
Electrostrictive Behavior in Lead Magnesium Niobate (PMN) Actuators. Part I: Materials Perspective
,”
Smart Mater. Struct.
0964-1726,
1
, pp.
124
133
.
22.
Cross
,
L. E.
, 1995, “
Ferroelectric Materials for Electromechanical Transducer Application
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
34
(
5B
), May, pp.
2525
2532
.
23.
Tzou
,
H. S.
, and
Ye
,
R.
, 1996, “
Analysis of Piezoelectric Structures with Laminated Piezoelectric Triangle Shell Elements
,”
AIAA J.
0001-1452,
34
(
1
), pp.
110
115
.
24.
Tzou
,
H. S.
, 1993,
Piezoelectric Shells-Distributed Sensing and Control of Continua
,
Kluwer Academic Publishers
,
Boston/Dordrecht
.
25.
Tzou
,
H. S.
, and
Chai
,
W. K.
, 2003, “
Modal Voltages and Micro-Signal Analysis of Conical Shells of Revolution
,”
J. Sound Vib.
0022-460X,
260
(
4
), pp.
589
609
.
26.
Tzou
H. S.
, and
Wang
,
D. W.
, 2002, “
Distributed Dynamic Signal Analysis of Piezoelectric Laminated Linear and Nonlinear Toroidal Shells
,”
J. Sound Vib.
0022-460X,
254
(
2
), pp.
203
218
.
You do not currently have access to this content.