The research investigates the transient vibrations of a pinned beam with transverse magnetic fields and thermal loads. The equation of motion is derived by the Hamilton’s principal, and the damping factor is considered. The property of the material is assumed which has the linear thermal expansion and resistivity. Using the Runge–Kutta method, the amplitude versus time and velocity versus amplitude for the first mode and the first two modes are dertermined. The results show that the transient vibratory behaviors of the beam are influenced by the magnetic fields, thermal loads, and the frequencies of oscillation transverse magnetic field. Also, the period of vibration shifts to higher value with the increase of the magnetic fields and temperatures. In this paper, the effects of using different frequencies of the oscillating transverse magnetic field to display the beat phenomenon and primary resonance are also presented and discussed.

1.
Ambartsumian
S. A.
,
1982
, “
Magneto-Elasticity of Thin Plates and Shells
,”
Appl. Mech. Rev.
,
35
, pp.
1
5
.
2.
Moon
F. C.
, and
Pao
Y. H.
,
1968
, “
Magnetoelastic Buckling of a Thin Plate
,”
ASME J. Appl. Mech.
,
35
, pp.
53
58
.
3.
Moon
F. C.
, and
Pao
Y. H.
,
1969
, “
Vibration and Dynamic Instability of a Beam-Plate in a Transverse Magnetic Field
,”
ASME J. Appl. Mech.
,
36
, pp.
92
100
.
4.
Miya
K.
,
Hara
K.
, and
Tabata
Y.
,
1978
, “
Experimental and theoretical study on magnetoelastic of a ferromagnetic cantilevered beam-plate
,”
ASME J. Appl. Mech.
,
45
, pp.
355
360
.
5.
Goudjo
G.
, and
Maugin
G. A.
,
1983
, “
On the Static and Dynamic Stability of Ssoft-Ferromagnetic Elastic Plates
,”
J. Mec. Theor. Appl.
,
2
, pp.
947
975
.
6.
Kojima
H.
, and
Nagama
K.
,
1985
, “
Nonlinear Vibration of a Beam with a Mass Subjected to Alternating Electromagnetic Force
,”
Bull. JSME
,
28
, pp.
468
475
.
7.
Eringen
A. C.
,
1989
, “
Theory of Electromagnetic Elastic Plates
,”
Int. J. Eng. Sci.
,
27
, pp.
363
375
.
8.
Lee
J. S.
,
1992
, “
Destabilizing Effect of Magnetic Damping in Plate Strip
,”
J. Eng. Mech.
,
118
, pp.
161
173
.
9.
Shih
Y. S.
,
Wu
G. Y.
, and
Chen
J. S.
,
1998
, “
Transient Vibrations of a Simply-Supported Beam with Axial Loads and Transverse Magnetic Fields
,”
Mech. Struct. Mach.
,
26
(
2
), pp.
115
130
.
10.
Tagaki
T.
,
Tani
J.
,
Matsubara
Y.
, and
Mogi
T.
,
1995
, “
Dynamic Behavior of Fusion Structural Components Under Strong Magnetic Fields
,”
ASME J. Appl. Mech.
,
27
, pp.
481
489
.
11.
Miya
K.
, and
Tagaki
T.
,
1980
, “
Finite-Element Analysis of Magnetoelastic Buckling of Ferromagnetic Beam-Plate
,”
ASME J. Appl. Mech.
,
47
, pp.
377
382
.
12.
Zhou
Y. H.
, and
Zheng
X. J.
,
1997
, “
A General Expression of Magnetic Force for Soft Ferromagnetic Plates in Complex Magnetic Fields
,”
Int. J. Eng. Sci.
,
35
, pp.
1405
1407
.
13.
Zhou
Y. H.
, and
Miya
K.
,
1998
, “
A Theoretical Prediction of Natural Frequency of a Ferromagnetic Beam-Plate with Low Susceptibility in an In-plane Magnetic Field
,”
ASME J. Appl. Mech.
,
65
, pp.
121
126
.
14.
Zhou
Y. H.
,
Gao
Y. W.
,
Zheng
X. J.
, and
Jiang
Q.
,
2000
, “
Buckling and Post-Buckling of a Ferromagnetic Beam-Plate Induced by Magnetoelastic Interactions
,”
Int. J. Non-Linear Mech.
,
35
, pp.
1059
1065
.
15.
Zheng
X. J.
, and
Wang
X. Z.
,
2001
, “
Analysis of Magnetoelastic Interaction of Rectangular Ferromagnetic Plates with Nonlinear Magnetization
,”
Int. J. Solids Struct.
,
38
, pp.
8641
8652
.
16.
Ziegler
F.
, and
Rammerstorfer
G.
,
1989
, “Thermal Stability,” in Thermal Stress III, edited by
Hetnarski
R. B.
Elsevier Science Publishers B.V., Amsterdam.
17.
King
R.W.P.
, and
Prasad
S.
,
1986
, Fundamental Electromagnetic Theory and Applications, Prentice-Hall, Inc., Englewood Cliffs, NJ.
18.
Bolotin
V.V.
,
1964
, The Dynamic Stability of Elastic Systems, Holden-Day, Inc., SF.
This content is only available via PDF.
You do not currently have access to this content.