High-speed milling is often modeled as a kind of highly interrupted machining, when the ratio of time spent cutting to not cutting can be considered as a small parameter. In these cases, the classical regenerative vibration model, playing an essential role in machine tool vibrations, breaks down to a simplified discrete mathematical model. The linear analysis of this discrete model leads to the recognition of the doubling of the so-called instability lobes in the stability charts of the machining parameters. This kind of lobe-doubling is related to the appearance of period doubling vibrations originated in a flip bifurcation. This is a new phenomenon occurring primarily in low-immersion high-speed milling along with the Neimark-Sacker bifurcations related to the classical self-excited vibrations or Hopf bifurcations. The present work investigates the nonlinear vibrations in the case of period doubling and compares this to the well-known subcritical nature of the Hopf bifurcations in turning processes. The identification of the global attractor in the case of unstable cutting leads to contradiction between experiments and theory. This contradiction draws the attention to the limitations of the small parameter approach related to the highly interrupted cutting condition.

1.
Davies
,
M. A.
,
Pratt
,
J. R.
,
Dutterer
,
B.
, and
Burns
,
T. J.
, 2000, “
The Stability of Low Immersion Milling
,”
CIRP Ann.
0007-8506,
49
, pp.
37
40
.
2.
Davies
,
M. A.
,
Pratt
,
J. R.
,
Dutterer
,
B. S.
, and
Burns
,
T. J.
, 2002, “
Stability Prediction for Low Radial Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
(
2
), pp.
217
225
.
3.
Bayly
,
P. V.
,
Halley
,
J. E.
,
Mann
,
B. P.
, and
Davies
,
M. A.
, 2001, “
Stability of Interrupted Cutting by Temporal Finite Element Analysis
,”
19th Biennial Conference on Mechanical Vibration and Noise, ASME 2001 Design Engineering Technical Conferences
,
Pittsburgh
,
DETC2001/VIB-21581
.
4.
Insperger
,
T.
, and
Stépán
,
G.
, 1999, “
Regenerative Vibration of Milling Process
,”
Proceedings of Dynamics and Control of Mechanical Processing
,
Budapest
, pp.
75
79
.
5.
Insperger
,
T.
, and
Stépán
,
G.
, 2000, “
Stability of High-Speed Milling
,”
Proceedings of ASME Symposium on Nonlinear Dynamics and Stochastic Mechanics
,
Orlando
, FL,
AMD-241
, pp.
119
123
.
6.
Altintas
,
Y.
, and
Budak
,
E.
, 1995, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann.
0007-8506,
44
(
1
), pp.
357
362
.
7.
Corpus
,
W. T.
, and
Endres
,
W. J.
, 2000, “
A High-Order Solution for the Added Stability Lobes in Intermittent Machining
,”
Proceedings of the Symposium on Machining Processes
,
Orlando
,
MED-11
, pp.
871
878
.
8.
Tian
,
J.
, and
Hutton
,
S. G.
, 2001, “
Chatter Instability in Milling Systems with Flexible Rotating Spindles—A New Theoretical Approach
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
(
1
), pp.
1
9
.
9.
Insperger
,
T.
,
Mann
,
B. P.
,
Stépán
,
G.
, and
Bayly
,
P. V.
, 2003, “
Stability of Up-Milling and Down-Milling, Part 1: Alternative Analytical Methods
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
(
1
), pp.
25
34
.
10.
Balachandran
,
B.
, 2001, “
Non-Linear Dynamics of Milling Process
,”
Philos. Trans. R. Soc. London
0962-8436,
359
, pp.
793
820
.
11.
Zhao
,
M. X.
, and
Balachandran
,
B.
, 2001, “
Dynamics and Stability of Milling Process
,”
Int. J. Solids Struct.
0020-7683,
38
(
10-13
), pp.
2233
2248
.
12.
Schmitz
,
T. L.
, 2002, “
Automatic Trimming Of Machining Stability Lobes
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
, pp.
1479
1486
.
13.
Mann
,
B. P.
,
Insperger
,
T.
,
Bayly
,
P. V.
, and
Stépán
,
G.
, 2003, “
Stability of Up-Milling and Down-Milling, Part 2: Experimental Verification
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
(
1
), pp.
35
40
.
14.
Gradišek
,
J.
,
Friedrich
,
R.
,
Govekar
,
E.
, and
Grabec
,
I.
, 2002, “
Analysis of Data from Periodically Forced Stochastic Processes
,”
Phys. Lett. A
0375-9601,
294
(
3-4
), pp.
234
238
.
15.
Tlusty
,
J.
, 2000,
Manufacturing Processes and Equipment
,
Prentice Hall
, Englewood Cliffs, NJ.
16.
Insperger
,
T.
,
Stépán
,
G.
,
Bayly
,
P. V.
, and
Mann
,
B. P.
, 2003, “
Multiple Chatter Frequencies in Milling Processes
,”
J. Sound Vib.
0022-460X,
262
(
2
), pp.
333
345
.
17.
Guckenheimer
,
J.
, and
Holmes
,
P.
, 1986,
Nonlinear Oscillation, Dynamical Systems and Bifurcation of Vector Fields
,
Springer-Verlag
, New York.
18.
Szalai
,
R.
, 2002, “
Nonlinear Vibrations of Interrupted Cutting Processes
,” M.Sc thesis, Budapest University of Technology and Economics.
19.
Stépán
,
G.
, and
Kalmár-Nagy
,
T.
, 1997, “
Nonlinear Regenerative Machine Tool Vibration
,”
Proceedings of the 17th Biennial Conference on Mechanical Vibration and Noise, ASME Design Engineering Technical Conferences
,
Sacramento
,
DETC97/VIB-4021
.
20.
Kalmár-Nagy
,
T.
,
Stépán
,
G.
, and
Moon
,
F. C.
, 2001, “
Subcritical Hopf Bifurcation in the Delay Equation Model for Machine Tool Vibrations
,”
Nonlinear Dyn.
0924-090X,
26
, pp.
121
142
.
21.
Halley
,
J. E.
, 2000, “
Stability of Low Radial Immersion Milling
,” M.Sc thesis, Washington University, St. Louis, MO.
22.
Engelborghs
,
K.
,
Luzyanina
,
T.
,
Hout
,
K. J.
, and
Roose
,
D.
, 2000, “
Collocation Method for the Computation of Periodic Solutions of Delay Differential Equations
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
22
(
5
), pp.
1953
1609
.
You do not currently have access to this content.