The paper presents stability of a rotor system with a squeeze film damper (SFD) using an electromagnet. The electromagnet is installed in the inner damper of the SFD. The proposed SFD has basically the property of a conventional SFD and variable damping according to the strength of the applied electric current. Therefore, when the applied current is controlled, the whirling amplitude of the rotor system can be effectively reduced in a wide operational speed range. In the present work, the performance of the SFD was experimentally investigated according to the magnetic field strength. When the applied current increased, the whirling amplitude greatly reduced at the critical speeds and damping ratio increased. © 2004 American Institute of Physics.

1.
Nikolajsen
,
J. L.
, and
Hoque
,
M. S.
,
1988
, “
An Electroviscous Damper for Rotor Applications
,”
ASME J. Vibr. Acoust.
,
112
(
3
), pp.
440
443
.
2.
Morishita
,
S.
, and
Mitsui
,
J.
,
1992
, “
Controllable Squeeze Film Damper (An Application of Electro-Rheological Fluid)
,”
ASME J. Vibr. Acoust.
,
114
(
3
), pp.
354
357
.
3.
Ahn
,
Young Kong
,
Yang
,
Bo-Suk
, and
Morishita
,
Shin
,
2002
, “
Directional Controllable Squeeze Film Damper Using Electro-Rheological Fluid
,”
ASME J. Vibr. Acoust.
,
124
, pp.
105
109
.
4.
Ahn
,
Y. K.
,
Morishita
,
S.
, and
Yang
,
B. S.
,
1988
, “
Directionally Controllable Squeeze Film Damper Using Liquid Crystal
,”
KSME International Journal
,
12
(
6
), pp.
1097
1103
.
5.
Zhu, C., Robb, D. A., and Ewins, D. J., 2002, “Dynamics of Over-Hung Rotor with a Disc-Type Magneto-Rheological Fluid Damper,” IFToMM Sixth International Conference on Rotor Dynamics, pp. 607–614.
6.
Vance
,
J. M.
, and
Ying
,
D.
,
2000
, “
Experimental Measurements of Actively Controlled Bearing Damping with an Electrorheological Fluid
,”
ASME J. Eng. Gas Turbines Power
,
122
, pp.
337
344
.
7.
Wereley
,
N.
, ed.
,
J. Intell. Mater. Syst. Struct.
,
13
(
10
), pp.
617
685
.
8.
Vance
,
J. M.
,
Ying
,
D.
, and
Nikolajsen
,
J. L.
,
2000
, “
Actively Controlled Bearing Dampers for Aircraft Engine Applications
,”
ASME J. Eng. Gas Turbines Power
,
122
, pp.
466
472
.
9.
Nikolajsen
,
J. L.
, and
Holmes
,
R.
, and
Gondhalekar
,
V.
,
1979
, “
Investigation of an Electromagnetic Damper for Vibration Control of a Transmission Shaft
,”
Proc. Inst. Mech. Eng.
,
193
(
31
), pp.
331
336
.
10.
Kasarada
,
M. E. F.
,
Allaire
,
P. E.
,
Humphris
,
R. R.
, and
Barrett
,
L. E.
,
1990
, “
A Magnetic Damper for First-Mode Vibration Reduction in Multimass Flexible Rotors
,”
ASME J. Eng. Gas Turbines Power
,
112
, pp.
463
469
.
11.
Lee
,
C. H.
, and
Kim
,
J. S.
,
1992
, “
Modal Testing and Suboptimal Vibration Control of Flexible Rotor Bearing System by Using a Magnetic Bearing
,”
ASME J. Dyn. Syst., Meas., Control
,
114
, pp.
244
252
.
12.
Frederick
,
J. R.
, and
Darlow
,
M. S.
,
1994
, “
Operation of an Electromagnetic Eddy-Current Damper with a Supercritical Shaft
,”
ASME J. Vibr. Acoust.
,
116
, pp.
578
580
.
13.
Kligerman
,
Y.
, and
Gottlieb
,
O.
,
1998
, “
Dynamics of a Rotating System with a Nonlinear Eddy-Current Damper
,”
ASME J. Vibr. Acoust.
,
120
, pp.
848
853
.
14.
Murakami
,
C.
, and
Satoh
,
I.
,
1999
, “
A Magnetic Damper Based on Magnetic See-Saw Principles and Its Analysis Using Bessel Function
,”
Trans. Inst. Electr. Eng. Jpn., Part A
,
119
(
5
), pp.
745
752
.
You do not currently have access to this content.