Volterra series provides a structured analytical platform for modeling and identification of nonlinear systems. The series has been widely used in nonparametric identification through higher order frequency response functions or FRFs. A parametric identification procedure based on recursive evaluation of response harmonic amplitude series is presented here. The procedure is experimentally investigated for a rotor-bearing system supported in rolling element bearings. The estimates of nonlinear bearing stiffness obtained from experimentation have been compared with analytical values and experimental results of previous works.

1.
Bedrosian
,
E.
, and
Rice
,
S. O.
,
1971
, “
The Output Properties of Volterra Systems (Nonlinear System with Memory) Driven by Harmonic and Gaussian Input
,”
Proc. IEEE
,
59
(
12
), pp.
1688
1707
.
2.
Boyd
,
S.
,
Tang
,
Y. S.
, and
Chua
,
L. O.
,
1983
, “
Measuring Volterra Kernels
,”
IEEE Trans. Circuits Syst.
,
CAS-30
(
8
), pp.
571
577
.
3.
Chua
,
L. O.
, and
Liao
,
Y.
,
1989
, “
Measuring Volterra Kernels (II)
,”
Int. J. of Circuit Theory and Applications
,
17
, pp.
151
190
.
4.
Gifford
,
S. J.
, and
Tomlinson
,
G. R.
,
1989
, “
Recent Advances in the Application of Functional Series to Nonlinear Structures
,”
J. Sound Vib.
,
135
(
2
), pp.
289
317
.
5.
Chatterjee
,
A.
, and
Vyas
,
N. S.
,
2001
, “
Stiffness Nonlinearity Classification through Structured Response Component Analysis using Volterra Series
,”
Mech. Syst. Signal Process.
,
15
(
2
), pp.
323
336
.
6.
Lee
,
G. M.
,
1997
, “
Estimation of Nonlinear System Parameters using Higher Order Frequency Response Functions
,”
Mech. Syst. Signal Process.
,
11
(
2
), pp.
219
228
.
7.
Chatterjee, A., and Vyas, N. S., 2002, “Nonlinear Parameter Estimation through Volterra Series using Method of Recursive Iteration,” accepted for publication in J. Sound Vib.
8.
Harris, T. A., 1984, Rolling Bearing Analysis, Wiley, New York.
9.
Ragulskis, K. M., Jurkauskas A. Y., Atstupenas, V. V., Vitkute, A. Y., and Kulvec, A. P., 1974, Vibration in Bearings, Mintis Publishers, Vilnius.
10.
Bannister
,
R. H.
,
1976
, “
A Theoretical And Experimental Investigation Illustrating the Influence of Nonlinearity and Misalignment on the Eight Film Co-efficients
,”
Proc. Inst. Mech. Eng.
,
190
, pp.
271
278
.
11.
Choi
,
F. K.
,
Braun
,
M. J.
, and
Hu
,
Y.
,
1992
, “
Nonlinear Transient and Frequency Response Analysis of a Hydrodynamic Bearing
,”
ASME J. Tribol.
,
114
, pp.
448
454
.
12.
Garibaldi
,
L.
, and
Tomlinson
,
G. R.
,
1988
, “
A Procedure for Identifying Non-linearity in Rigid Rotors Supported in Hydrodynamic and Ball/Roller Bearing System
,”
I. Mech. Proc. on Vibrations in Rotating Machinery
,
4
, pp.
229
234
.
13.
Khan
,
A. A.
, and
Vyas
,
N. S.
,
2001
, “
Application of Volterra and Wiener Theories for Nonlinear Parameter Estimation in a Rotor-Bearing System
,”
Nonlinear Dyn.
,
24
(
3
), pp.
285
304
.
14.
Chatterjee
,
A.
, and
Vyas
,
N. S.
,
2000
, “
Convergence Analysis of Volterra Series Response of Nonlinear Systems Subjected to Harmonic Excitations
,”
J. Sound Vib.
,
236
(
2
), pp.
339
358
.
15.
Ewins, D. J., 1984, Modal Testing: Theory and Practice, Research Studies Press, England.
16.
Tiwari
,
R.
, and
Vyas
,
N. S.
,
1995
, “
Estimation of Nonlinear Stiffness Parameters of Rolling Element Bearings from Random Response of Rotor Bearing Systems
,”
Journal of Sound Vib.
187
(
2
), pp.
229
239
.
You do not currently have access to this content.