In this paper we present findings from an investigation of synchronization of linearly diffusively coupled van der Pol oscillators. The stability boundary of the in-phase mode of two identical oscillators in terms of the two coupling parameters is determined numerically. We show that in addition to the out-of-phase and in-phase motions of the oscillators there exist two other phase-locked motions and behavior that appears chaotic. The effect of detuning the oscillators from each other is also presented. Finally, the analytical and numerical results from an investigation of the in-phase mode system of n coupled oscillators is presented.

1.
Foo, S. Y., 1996, “Coupled Nonlinear Oscillators in Biological Systems,” 1996 NSF Design and Manufacturing Conference.
2.
Murray, J. D., 1993, Mathematical Biology, Springer-Verlag, New York.
3.
Storti
,
D. W.
and
Reinhall
,
P. G.
,
1995
,
Stability of in-phase and out-of-phase modes for a pair of linearly coupled van der Pol oscillators
.
Stability, Vibration and Control of Systems
,
2
(
B
),
1
23
.
4.
Blevins, R. D., 1977, Flow Induced Vibrations. Van Nostrand, New York.
5.
Cohen
,
A. H.
,
Holmes
,
P. J.
, and
Rand
,
R. H.
,
1982
,
The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: A mathematical model
.
J. Math. Biol.
,
13
,
345
369
.
6.
Rand
,
R. H.
, and
Holmes
,
P. J.
,
1980
,
Bifurcation of periodic motions in two weakly coupled van der Pol oscillators
.
Int. J. Non-Linear Mech.
,
15
,
387
399
.
7.
Reinhall, P. G., and Storti, D. W., 1995, A numerical investigation of phase-locked and chaotic behavior of coupled van der Pol oscillators. Proceedings of the 15th Biennial ASME Conference on Mechanical Vibration and Noise.
8.
Storti
,
D. W.
, and
Reinhall
,
P. G.
,
2000
,
Phase-locked mode stability for coupled van der Pol oscillators
.
ASME J. Vibr. Acoust.
,
122
(
3
),
318
323
.
9.
Chiu
,
C. H.
,
Lin
,
W. W.
, and
Wang
,
C. S.
,
1998
,
Synchronization in a lattice of coupled van der Pol systems
.
Int. J. Bifurcation Chaos Appl. Sci. Eng.
,
8
(
12
),
2353
2373
.
10.
Storti
,
D. W.
, and
Rand
,
R. H.
,
1982
,
Dynamics of two strongly coupled van der Pol oscillators
.
Int. J. Non-Linear Mech.
,
17
(
3
),
143
152
.
11.
Yoshinaga
,
T.
,
Kawakami
,
H.
, and
Yoshikawa
,
K.
,
1991
,
Mode bifurcations in diffusively coupled van der Pol equations
.
IEICE Trans. Commun.
,
74
(
6
),
1420
1427
.
12.
Zielin´ska
,
T.
,
1996
,
Coupled oscillators utilized as gait rhythm generators of a two-legged walking machine
.
Biol. Cybern.
,
74
,
263
273
.
13.
Storti, D. W., Nevrinceanu, C., and Reinhall, P. G., 1993, Perturbation solution of an oscillator with periodic van der Pol damping. Dynamics and Vibration of Time-Varying Systems and Structures, ASME DE, 56:397–402.
14.
Andersen
,
C. M.
, and
Geer
,
J. F.
,
1982
,
Power series expansions for the frequency and period of the limit cycle of the van der Pol equation
.
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
42
,
678
693
.
15.
Dadfar
,
M. B.
,
Greer
,
J.
, and
Andersen
,
C. M.
,
1984
,
Perturbation analysis of the limit cycle of the van der Pol equation
.
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
44
,
881
895
.
16.
Storti
,
D. W.
,
1987
,
Bifurcations which destroy the out-of-phase mode in a pair of linearly coupled relaxation oscillators
.
Int. J. Non-Linear Mech.
,
25
(
5
),
387
390
.
17.
Hegger
,
R.
,
Kantz
,
H.
, and
Schreiber
,
T.
,
1999
,
Practical implementation of nonlinear time series methods: The TISEAN package
.
Chaos
,
9
,
413
440
.
18.
Magnus, W., and Winkler, S., 1962, Hill’s Equation, Interscience Publishers, New York.
You do not currently have access to this content.