Abstract

Recently, physics-informed neural networks (PINNs) have displayed great potential in delivering swift and accurate solutions for inverse problems. Here, a PINN was used to solve the inverse heat conduction problem in the rotating cavities of an aeroengine high-pressure compressor internal air system. The neural network was designed to receive experimentally captured radially distributed temperature profiles as inputs and predict the associated surface heat fluxes. The correctness of these predicted heat fluxes was assessed by numerically solving the direct heat conduction equation using a 2D finite-element model, thereby recovering the original temperature profiles. A comparative analysis is conducted between the predicted temperature profiles and the initial inputs. The physics-informed neural network is trained using noise-free synthetic data, created from a range of radial temperature curve-fit coefficients, and subsequently tested on noisy experimental data at engine representative conditions. The predicted temperature values exhibit some good agreement with their respective actual counterparts. Furthermore, the sensitivity of model hyperparameters is explored to show the capability of the proposed approach. The results show that physics-informed neural networks exhibit reduced susceptibility to experimental uncertainties when addressing inverse problems, in contrast to inverse solution methods, and offer a possible new approach for the analysis of experimental data if trained on a sufficiently large dataset.

References

1.
Michael Owen
,
J.
, and
Long
,
C. A.
,
2015
, “
Review of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME J. Turbomach.
,
137
(
11)
, p.
111001
.
2.
Luberti
,
D.
,
Patinios
,
M.
,
Jackson
,
R. W.
,
Tang
,
H.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Design and Testing of a Rig to Investigate Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041030
.
3.
Owen
,
J. M.
,
1979
, “
On the Computation of Heat-Transfer Coefficients From Imperfect Temperature Measurements
,”
J. Mech. Eng. Sci.
,
21
(
5
), pp.
323
334
.
4.
Puttock-Brown
,
M. R.
, and
Long
,
C. A.
,
2021
, “
Heat Transfer Analysis in a Rotating Cavity With Axial Through-Flow
,”
ASME J. Eng. Gas Turbines Power
,
143
(
5
), p.
051026
.
5.
Diemel
,
E.
,
Odenbach
,
S.
,
Uffrecht
,
W.
,
Rey Villazon
,
J.
, and
Guijarro Valencia
,
A.
,
2024
, “
Analysis of Cavity Disk Heat Transfer by Solving Inverse Heat Transfer Problem
,”
ASME J. Turbomach.
,
146
(
4
), p.
044501
.
6.
Tang
,
H.
,
Shardlow
,
T.
, and
Michael Owen
,
J.
,
2015
, “
Use of Fin Equation to Calculate Nusselt Numbers for Rotating Discs
,”
ASME J. Turbomach.
,
137
(
12
), p.
121003
.
7.
Tang
,
H.
,
Puttock-Brown
,
M. R.
, and
Michael Owen
,
J.
,
2018
, “
Buoyancy-Induced Flow and Heat Transfer in Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
140
(
7
), p.
071902
.
8.
Mirzamoghadam
,
A. V.
,
Kanjiyani
,
S.
,
Riahi
,
A.
,
Vishnumolakala
,
R.
, and
Gundeti
,
L.
,
2015
, “
Unsteady 360 Computational Fluid Dynamics Validation of a Turbine Stage Mainstream/Disk Cavity Interaction
,”
ASME J. Turbomach.
,
137
(
1
), p.
011008
.
9.
Borgerding
,
M.
,
Schniter
,
P.
, and
Rangan
,
S.
,
2017
, “
AMP-Inspired Deep Networks for Sparse Linear Inverse Problems
,”
IEEE Trans. Signal Process.
,
65
(
16
), pp.
4293
4308
.
10.
Aberdam
,
A.
,
Golts
,
A.
, and
Elad
,
M.
,
2021
, “
Ada-Lista: Learned Solvers Adaptive to Varying Models
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
44
(
12
), pp.
9222
9235
.
11.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2018
, “
Numerical Gaussian Processes for Time-Dependent and Nonlinear Partial Differential Equations
,”
SIAM J. Sci. Comput.
,
40
(
1
), pp.
A172
A198
.
12.
Deng
,
B.
,
Shin
,
Y.
,
Lu
,
L.
,
Zhang
,
Z.
, and
Karniadakis
,
G. E.
,
2022
, “
Approximation Rates of DeepONets for Learning Operators Arising From Advection-Diffusion Equations
,”
Neural Networks
,
153
(
1
), pp.
411
426
.
13.
Yang
,
L.
,
Daskalakis
,
C.
, and
Karniadakis
,
G. E.
,
2022
, “
Generative Ensemble Regression: Learning Particle Dynamics From Observations of Ensembles With Physics-Informed Deep Generative Models
,”
SIAM J. Sci. Comput.
,
44
(
1
), pp.
B80
B99
.
14.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
(
1
), pp.
686
707
.
15.
Jagtap
,
A. D.
,
Kharazmi
,
E.
, and
Karniadakis
,
G. E.
,
2020
, “
Conservative Physics-Informed Neural Networks on Discrete Domains for Conservation Laws: Applications to Forward and Inverse Problems
,”
Comput. Methods Appl. Mech. Eng.
,
365
(
1
), p.
113028
.
16.
Wang
,
S.
, and
Perdikaris
,
P.
,
2021
, “
Deep Learning of Free Boundary and Stefan Problems
,”
J. Comput. Phys.
,
428
(
1
), p.
109914
.
17.
Raissi
,
M.
,
Yazdani
,
A.
, and
Karniadakis
,
G. E.
,
2020
, “
Hidden Fluid Mechanics: Learning Velocity and Pressure Fields From Flow Visualizations
,”
Science
,
367
(
6481
), pp.
1026
1030
.
18.
Mao
,
Z.
,
Jagtap
,
A. D.
, and
Karniadakis
,
G. E.
,
2020
, “
Physics-Informed Neural Networks for High-Speed Flows
,”
Comput. Methods Appl. Mech. Eng.
,
360
(
1
), p.
112789
.
19.
Puttock-Brown
,
M. R.
,
2018
, “
Experimental and Numerical Investigation of Flow Structure and Heat Transfer in Gas Turbine HP Compressor Secondary Air Systems
,”
Ph.D. thesis
,
University of Sussex
,
Brighton, UK
.
20.
Nicholas
,
T. E. W.
,
Scobie
,
J. A.
,
Lock
,
G. D.
, and
Tang
,
H.
,
2024
, “
A Model of Mass and Heat Transfer for Disc Temperature Prediction in Open Compressor Cavities
,”
ASME J. Turbomach.
,
146
(
4
), p.
041001
.
21.
The MathWorks Inc.
,
2023
, “MATLAB version: 23.2.0 (R2023b),”
The MathWorks Inc
., Natick, MA.
22.
Kingma
,
D. P.
, and
Ba
,
J.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
3rd International Conference on Learning Representations
,
San Diego, CA
,
May 7–9
.
23.
Jackson
,
R. W.
,
Luberti
,
D.
,
Tang
,
H.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2021
, “
Measurement and Analysis of Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061004
.
You do not currently have access to this content.