Abstract
Counter-rotating vortices, formed by the interaction of film-cooling jets and the hot gas flow, adversely affect the performance of conventional film-cooling designs. Downstream vortex generators have been shown to improve cooling effectiveness by mitigating the effects of the counter-rotating vortices and by deflecting the cooling jet laterally. In this study, computational and experimental methods were used to examine how cylindrical film-cooling holes (D = 3.2 mm, L/D = 6, p/D = 3, α = 30 deg) with and without downstream vortex generators perform when the coolant supply channel is perpendicular to the direction of the hot gas. For this study, the hot gas had a temperature of 650 K and an average Mach number of 0.23. The hot-gas-to-coolant temperature ratio was 1.9, and two blowing ratios (0.75 and 1.0) were studied. Results from the computational fluid dynamics study show how crossflow affects the interaction between the film-cooling jet and hot gas flow with and without downstream vortex generators. The experimental measurements were based on infrared thermography in a conjugate heat transfer environment. Results were obtained for film-cooling performance in terms of overall effectiveness, film effectiveness, and local heat transfer coefficients. The downstream vortex generators can increase the laterally averaged effectiveness by a factor of 1.5 relative to cylindrical holes, but this higher performance is restricted to low crossflow velocities and higher blowing ratios.