Abstract

Counter-rotating vortices, formed by the interaction of film-cooling jets and the hot gas flow, adversely affect the performance of conventional film-cooling designs. Downstream vortex generators have been shown to improve cooling effectiveness by mitigating the effects of the counter-rotating vortices and by deflecting the cooling jet laterally. In this study, computational and experimental methods were used to examine how cylindrical film-cooling holes (D = 3.2 mm, L/D = 6, p/D = 3, α = 30 deg) with and without downstream vortex generators perform when the coolant supply channel is perpendicular to the direction of the hot gas. For this study, the hot gas had a temperature of 650 K and an average Mach number of 0.23. The hot-gas-to-coolant temperature ratio was 1.9, and two blowing ratios (0.75 and 1.0) were studied. Results from the computational fluid dynamics study show how crossflow affects the interaction between the film-cooling jet and hot gas flow with and without downstream vortex generators. The experimental measurements were based on infrared thermography in a conjugate heat transfer environment. Results were obtained for film-cooling performance in terms of overall effectiveness, film effectiveness, and local heat transfer coefficients. The downstream vortex generators can increase the laterally averaged effectiveness by a factor of 1.5 relative to cylindrical holes, but this higher performance is restricted to low crossflow velocities and higher blowing ratios.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
2.
Shih
,
T. I-P.
, and
Yang
,
V.
,
2014
,
Turbine Aerodynamics, Heat Transfer, Materials, and Mechanics
,
Institute of Aeronautics and Astronautics
,
Washington, DC
.
3.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
4.
Bunker
,
R. S.
,
2017
, “
Evolution of Turbine Cooling
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
, ASME Paper No. GT2017-63025.
5.
Uysal
,
S. C.
,
2020
, “
Analysis of Gas Turbine Cooling Technologies for Higher Natural Gas Combined Cycle Efficiency
,”
AIAA Propulsion and Energy 2020 Forum, American Institute of Aeronautics and Astronautics
,
Virtual Online
,
Aug. 24–28
, pp.
1
17
.
6.
Goldstein
,
R. J. R. J.
,
1971
, “
Film Cooling
,”
Adv. Heat. Transfer
,
7
, pp.
321
379
.
7.
Leylek
,
J. H. H.
, and
Zerkle
,
R. D. D.
,
1994
, “
Discrete-Jet Film Cooling: A Comparison of Computational Results With Experiments
,”
ASME J. Turbomach.
,
116
(
3
), pp.
358
368
.
8.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.
9.
Lee
,
C.-S.
,
Bryden
,
K.
, and
Shih
,
T. I-P.
,
2020
, “
Downstream Vortex Generators to Enhance Film-Cooling Effectiveness
,”
ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition
,
Virtual Online
,
Sept. 21–25
.
10.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
.
11.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
12.
Gritsch
,
M.
,
Colban
,
W.
,
Schär
,
H.
,
Döbbeling
,
K.
,
Schär
,
H.
, and
Döbbeling
,
K.
,
2005
, “
Effect of Hole Geometry on the Thermal Performance of Fan-Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
127
(
4
), pp.
718
725
.
13.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
,
125
(
1
), pp.
65
73
.
14.
Shih
,
T. I-P.
, and
Na
,
S.
,
2007
, “
Momentum-Preserving Shaped Holes for Film Cooling
,”
ASME Turbo Expo 2007: Power for Land, Sea, and Air
,
Montreal, Canada
,
May 14–17
.
15.
Ligrani
,
P. M.
,
Wigle
,
J. M.
,
Ciriello
,
S.
, and
Jackson
,
S. M.
,
1994
, “
Film-Cooling From Holes With Compound Angle Orientations: Part 1—Results Downstream of Two Staggered Rows of Holes With 3d Spanwise Spacing
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
341
352
.
16.
Ligrani
,
P. M.
,
Wigle
,
J. M.
, and
Jackson
,
S. W.
,
1994
, “
Film-Cooling From Holes With Compound Angle Orientations: Part 2—Results Downstream of a Single Row of Holes With 6d Spanwise Spacing
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
353
362
.
17.
Dittmar
,
J.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Assessment of Various Film-Cooling Configurations Including Shaped and Compound Angle Holes Based on Large-Scale Experiments
,”
ASME J. Turbomach.
,
125
(
1
), pp.
57
64
.
18.
Ekkad
,
S. V.
,
Zapata
,
D.
, and
Han
,
J. C.
,
1997
, “
Film Effectiveness Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method
,”
ASME J. Turbomach.
,
119
(
3
), pp.
587
593
.
19.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
118
(
4
), pp.
807
813
.
20.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Free-Stream Effects on the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061007
.
21.
Bunker
,
R. S.
,
2002
, “
Film Cooling Effectiveness Due to Discrete Holes Within a Transverse Surface Slot
,”
ASME Turbo Expo 2002: Power for Land, Sea, and Air
,
Amsterdam, The Netherlands
,
June 3–6
.
22.
Na
,
S.
, and
Shih
,
T. I-P.
,
2007
, “
Increasing Adiabatic Film-Cooling Effectiveness by Using an Upstream Ramp
,”
ASME J. Heat Transfer
,
129
(
4
), pp.
464
471
.
23.
Shih
,
T. I-P.
,
Lin
,
Y.-L.
,
Chyu
,
M. K.
, and
Gogineni
,
S.
,
1999
, “
Computations of Film Cooling From Holes With Struts
,”
ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition
,
Indianapolis, IN
,
June 7–10
.
24.
Zaman
,
K. B. M. Q.
, and
Foss
,
J. K.
,
1997
, “
The Effect of Vortex Generators on a Jet in a Cross-Flow
,”
Phys. Fluids
,
9
(
1
), pp.
106
114
.
25.
Nasir
,
H.
,
Ekkad
,
S. V.
, and
Acharya
,
S.
,
2003
, “
Flat Surface Film Cooling From Cylindrical Holes With Discrete Tabs
,”
J. Thermophys. Heat Transfer
,
17
(
3
), pp.
304
312
.
26.
Heidmann
,
J. D.
, and
Ekkad
,
S.
,
2008
, “
A Novel Antivortex Turbine Film-Cooling Hole Concept
,”
ASME J. Turbomach.
,
130
(
3
), p.
31020
.
27.
Rigby
,
D. L.
, and
Heidmann
,
J. D.
,
2008
, “
Improved Film Cooling Effectiveness by Placing a Vortex Generator Downstream of Each Hole
,”
ASME Turbo Expo 2008: Power for Land, Sea, and Air
,
Berlin, Germany
,
June 9–13
.
28.
Zaman
,
K. B. M. Q.
,
Rigby
,
D. L.
, and
Heidmann
,
J. D.
,
2010
, “
Inclined Jet in Crossflow Interacting With a Vortex Generator
,”
J. Propul. Power
,
26
(
5
), pp.
947
954
.
29.
Song
,
L.
,
Zhang
,
C.
,
Song
,
Y.
,
Li
,
J.
, and
Feng
,
Z.
,
2017
, “
Experimental Investigations on the Effects of Inclination Angle and Blowing Ratio on the Flat-Plate Film Cooling Enhancement Using the Vortex Generator Downstream
,”
Appl. Therm. Eng.
,
119
, pp.
573
584
.
30.
Lee
,
C.-S.
,
Shih
,
T. I-P.
,
Straub
,
D.
,
Weber
,
J.
, and
Robey
,
E. H.
,
2023
, “
Computational and Experimental Study of Film-Cooling Effectiveness With and Without Downstream Vortex Generators
,”
ASME J. Turbomach.
,
145
(
2
), p.
021007
.
31.
Bohn
,
D.
,
Ren
,
J.
, and
Kusterer
,
K.
,
2003
, “
Conjugate Heat Transfer Analysis for Film Cooling Configurations With Different Hole Geometries
,”
ASME Turbo Expo 2003, Vollocated with the 2003 International Joint Power Generation Conference
,
Atlanta, GA
,
June 16–19
.
32.
Gomatam Ramachandran
,
S.
, and
Shih
,
T. I-P.
,
2015
, “
Biot Number Analogy for Design of Experiments in Turbine Cooling
,”
ASME J. Turbomach.
,
137
(
6
), p.
061002
.
33.
Thole
,
K. A.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1997
, “
Effect of a Crossflow at the Entrance to a Film-Cooling Hole
,”
ASME J. Fluids Eng.
,
119
(
3
), pp.
533
540
.
34.
Kohli
,
A.
, and
Thole
,
K. A.
,
1998
, “
Entrance Effects on Diffused Film-Cooling Holes
,”
ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition
,
Stockholm, Sweden
,
June 2–5
.
35.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Discharge Coefficient Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
557
563
.
36.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2000
, “
Film-Cooling Holes With Expanded Exits: Near-Hole Heat Transfer Coefficients
,”
Int. J. Heat Fluid Flow
,
21
(
2
), pp.
146
155
.
37.
McClintic
,
J. W.
,
Fox
,
D. W.
,
Jones
,
F. B.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2019
, “
Flow Physics of Diffused-Exit Film Cooling Holes Fed by Internal Crossflow
,”
ASME J. Turbomach.
,
141
(
3
), p.
031010
.
38.
McClintic
,
J. W.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2018
, “
Effect of Internal Crossflow Velocity on Film Cooling Effectiveness—Part I: Axial Shaped Holes
,”
ASME J. Turbomach.
,
140
(
1
), p.
11003
.
39.
McClintic
,
J. W.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2018
, “
Effect of Internal Crossflow Velocity on Film Cooling Effectiveness—Part II: Compound Angle Shaped Holes
,”
ASME J. Turbomach.
,
140
(
1
), p.
11004
.
40.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Effect of Internal Coolant Crossflow on the Effectiveness of Shaped Film-Cooling Holes
,”
ASME J. Turbomach.
,
125
(
3
), pp.
547
554
.
41.
Stratton
,
Z. T.
,
2014
, “
Effects of Crossflow in an Internal-Cooling Channel on Film Cooling of a Flat Plate Through Compound-Angle Holes
,” Master of Science Thesis, Paper 264,
Purdue School of Mechanical Engineering
,
West Lafayette, IN
.
42.
Qenawy
,
M.
,
Zhou
,
W.
, and
Liu
,
Y.
,
2022
, “
Effects of Crossflow-Fed-Shaped Holes on the Adiabatic Film Cooling Effectiveness
,”
Int. J. Therm. Sci.
,
177
(
Feb.
), p.
107578
.
43.
Sperling
,
S. J.
, and
Mathison
,
R. M.
,
2022
, “
Time-Accurate Evaluation of Film Cooling Jet Characteristics for Plenum and Crossflow Coolant Supplies
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
4
), p.
041007
.
44.
Wang
,
J.
,
Zhang
,
C.
,
Liu
,
X.
,
Song
,
L.
, and
Li
,
J.
,
2022
, “
Experimental and Numerical Investigation on the Film Cooling Performance of Cylindrical Hole and Fan-Shaped Hole With Vortex Generator Fed by Crossflow
,”
Int. J. Heat Mass Transfer
,
187
, p.
122560
.
45.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
4th International Symposium on Turbulence, Heat and Mass Transfer
, pp.
625
632
.
46.
Kim
,
C. S.
,
1975
,
Thermophysical Properties of Stainless Steels
,
Argonne, IL.
.
47.
Ansys FLUENT Computational Fluid Dynamic Code, Release 17.1, ANSYS, Inc., https://www.ansys.com/academic/terms-and-conditions.
48.
Kneer
,
J.
,
Puetz
,
F.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2016
, “
A New Test Facility to Investigate Film Cooling on a Nonaxisymmetric Contoured Turbine Endwall—Part II: Heat Transfer and Film Cooling Measurements
,”
ASME J. Turbomach.
,
138
(
7
), p.
71004
.
49.
Ramesh
,
S.
,
Robey
,
E. H.
,
Lawson
,
S.
,
Straub
,
D. L.
, and
Black
,
J. B.
,
2020
, “
Design Flow Field, and Heat Transfer Characterization of Conjugate Aero-Thermal Test Facility at NETL
,”
ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition
,
Virtual Online
,
Sept. 21–25
.
50.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.
51.
Searle
,
M.
,
Roy
,
A.
,
Black
,
J.
,
Straub
,
D.
, and
Ramesh
,
S.
,
2022
, “
Investigating Gas Turbine Internal Cooling Using Supercritical CO2 at Higher Reynolds Numbers for Direct Fired Cycle Applications
,”
ASME J. Turbomach.
,
144
(
1
), p.
011007
.
52.
Schaffler
,
A.
,
1980
, “
Experimental and Analytical Investigation of the Effects of Reynolds Number and Blade Surface Roughness on Multistage Axial Flow Compressors
,”
J. Eng. Power
,
102
(
1
), pp.
5
12
.
53.
Baldauf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2002
, “
Correlation of Film-Cooling Effectiveness From Thermographic Measurements at Enginelike Conditions
,”
ASME J. Turbomach.
,
124
(
4
), pp.
686
698
.
54.
Sinha
,
A. K. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.
You do not currently have access to this content.