Abstract

The flow in a 1.5-stage axial flow turbine with 16 vanes and 32 blades is investigated by large-eddy simulations with special focus on the analysis of the hot gas ingress through the rim seal into the upstream wheel space. Two setups with different solution domains are used. In the first large-eddy simulation, the full circumference of the turbine is resolved on a mesh with approximately 1 billion mesh cells. The second setup includes only a single-blade passage and is solved on a mesh with approximately 75 million cells. The analysis shows that the flow fields inside the upstream wheel space, i.e., between the disk of the upstream stator and the rotor disk strongly differ. In the 360 deg domain, two large-scale rotating vortex structures are observed, which have a strong impact on the ingress of main annulus gas into the wheel space. These structures cannot be captured in the single-blade passage domain. The instantaneous flow fields are further analyzed by dynamic mode decomposition to determine similarities and differences in the two flow fields. The comparison of the modes from the two setups reveals that the hot gas ingress from modes at the blade passing frequency generates a reduced sealing efficiency only at the outer radius of the wheel space. The additional presence of large-scale modes, however, reduce the sealing efficiency also in the inner wheel space. These results suggest that a single-blade passage simulation cannot be used for a reliable prediction of the hot gas ingress for the investigated turbine setup and operating condition.

References

1.
Schuepbach
,
P.
,
Abhari
,
R.
,
Rose
,
M.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2010
, “
Effects of Suction and Injection Purge-Flow on the Secondary Flow Structures of a High-Work Turbine
,”
ASME J. Turbomach.
,
132
(
2
), p.
021021
.
2.
Schädler
,
R.
,
Kalfas
,
A.
,
Abhari
,
R.
,
Schmid
,
G.
, and
Voelker
,
S.
,
2016
, “
Modulation and Radial Migration of Turbine Hub Cavity Modes by the Rim Seal Purge Flow
,”
ASME J. Turbomach.
,
139
(
1
), p.
011011
.
3.
Mesny
,
A.
,
Glozier
,
M.
,
Pountney
,
O.
,
Scobie
,
J.
,
Li
,
Y.
,
Cleaver
,
D.
, and
Sangan
,
C.
,
2022
, “
Vortex Tracking of Purge-Mainstream Interactions in a Rotating Turbine Stage
,”
ASME J. Turbomach.
,
144
(
4
), p.
041011
.
4.
Hösgen
,
T.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2021
, “
Analysis of Wheel Space Ingress in a One-Stage Axial Turbine
,”
Proceedings of Global Power and Propulsion Society
,
Xi'an, China
,
Oct. 4
.
5.
Laskowski
,
G.
,
Bunker
,
R.
,
Bailey
,
J.
,
Ledezma
,
G.
,
Kapetanovic
,
S.
,
Itzel
,
G.
,
Sullivan
,
M.
, and
Farrell
,
T.
,
2011
, “
An Investigation of Turbine Wheelspace Cooling Flow Interactions With a Transonic Hot Gas Path—Part 2: CFD Simulations
,”
ASME J. Turbomach.
,
133
(
4
), p.
041020
.
6.
Rabs
,
M.
,
Benra
,
F.-K.
,
Dohmen
,
H. J.
, and
Schneider
,
O.
,
2009
, “
Investigation of Flow Instabilities Near the Rim Cavity of a 1.5 Stage Gas Turbine
,”
Proceedings of ASME Turbo Expo 2009: Power for Land, Sea, and Air, Volume 3: Heat Transfer, Parts A and B
,
Orlando, FL
,
June 8–12
.
7.
Bohn
,
D.
, and
Wolff
,
M.
,
2003
, “
Improved Formulation to Determine Minimum Sealing Flow—Cw, min—for Different Sealing Configurations
,”
Proceedings of ASME Turbo Expo 2003: Power for Land, Sea, and Air, Volume 5: Turbo Expo 2003, Parts A and B
,
Atlanta, GA
,
June 16–19
.
8.
Rudzinski
,
B.
,
2009
, “
Experimentelle Untersuchung des Heißgaseinzuges in die Rotor-Stator-Zwischenräume einer eineinhalbstufigen Turbine für unterschiedliche Dichtkonfigurationen
,” dissertation,
RWTH Aachen University
,
Aachen, Germany
.
9.
Beard
,
P.
,
Gao
,
F.
,
Chana
,
K.
, and
Chew
,
J.
,
2016
, “
Unsteady Flow Phenomena in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
032501
.
10.
Horwood
,
J.
,
Hualca
,
F.
,
Wilson
,
M.
,
Scobie
,
J.
,
Sangan
,
C.
,
Lock
,
G.
,
Dahlqvist
,
J.
, and
Fridh
,
J.
,
2020
, “
Flow Instabilities in Gas Turbine Chute Seals
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021019
.
11.
Horwood
,
J.
,
Hualca
,
F.
,
Scobie
,
J.
,
Wilson
,
M.
,
Sangan
,
C.
, and
Lock
,
G.
,
2018
, “
Experimental and Computational Investigation of Flow Instabilities in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011028
.
12.
Gao
,
F.
,
Chew
,
J.
,
Beard
,
P.
,
Amirante
,
D.
, and
Hills
,
N.
,
2018
, “
Large-Eddy Simulation of Unsteady Turbine Rim Sealing Flows
,”
Int. J. Heat Fluid Flow
,
70
, pp.
160
170
.
13.
Palermo
,
D.
,
Gao
,
F.
,
Amirante
,
D.
,
Chew
,
J.
,
Bru Revert
,
A.
, and
Beard
,
P.
,
2021
, “
Wall-Modelled Large Eddy Simulations of Axial Turbine Rim Sealing
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061025
.
14.
Mirzamoghadam
,
A. V.
,
Molla-Hosseini
,
K.
,
Gonzalez-Martino
,
I.
, and
Polidoro
,
F.
,
2017
, “
Unsteady 360 Computational Fluid Dynamics Validation of a Turbine Stage Mainstream/Disc Cavity Interaction Using Lattice-Boltzmann Method
,”
Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, Volume 5B: Heat Transfer
,
Charlotte, NC
,
June 26–30
.
15.
Cao
,
C.
,
Chew
,
J.
,
Millington
,
P.
, and
Hogg
,
S.
,
2004
, “
Interaction of Rim Seal and Annulus Flows in An Axial Flow Turbine
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
786
793
.
16.
Jakoby
,
R.
,
Zierer
,
T.
,
Lindblad
,
K.
,
Larsson
,
J.
,
Bohn
,
D. E.
,
Funcke
,
J.
, and
Decker
,
A.
,
2004
, “
Numerical Simulation of the Unsteady Flow Field in an Axial Gas Turbine Rim Seal Configuration
,”
Proceedings of ASME Turbo Expo 2004: Power for Land, Sea, and Air, Volume 4: Turbo Expo 2004
,
Vienna, Austria
,
June 14–17
.
17.
Pogorelov
,
A.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2019
, “
Large-Eddy Simulation of the Unsteady Full 3d Rim Seal Flow in a One-Stage Axial-Flow Turbine
,”
Flow, Turbulence Comb.
,
102
(
1
), pp.
189
220
.
18.
Hösgen
,
T.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2020
, “
Large-Eddy Simulations of Rim Seal Flow in a One-Stage Axial Turbine
,”
J. Global Power Propulsion Soc.
,
4
, pp.
309
321
.
19.
Schneiders
,
L.
,
Günther
,
C.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2016
, “
An Efficient Conservative Cut-cell Method for Rigid Bodies Interacting With Viscous Compressible Flows
,”
J. Comput. Phys.
,
311
, pp.
62
86
.
20.
Günther
,
C.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2014
, “
A Flexible Level-Set Approach for Tracking Multiple Interacting Interfaces in Embedded Boundary Methods
,”
Comput. Fluids
,
102
, pp.
182
202
.
21.
Niemöller
,
A.
,
Schlottke-Lakemper
,
M.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2020
, “
Dynamic Load Balancing for Direct-Coupled Multiphysics Simulations
,”
Comput. Fluids
,
199
, p.
104437
.
22.
Poinsot
,
T.
, and
Lelef
,
S.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.
23.
Hunt
,
J.
,
Wray
,
A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Proceedings of the Summer Program; Center for Turbulence Research
,
Stanford University
, Stanford, CA.
24.
Schmid
,
P.
, and
Sesterhenn
,
J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid. Mech.
,
656
, pp.
5
28
.
25.
Jovanovic
,
M.
,
Schmid
,
P.
, and
Nichols
,
J.
,
2014
, “
Sparsity-Promoting Dynamic Mode Decomposition
,”
Phys. Fluids.
,
26
(
2
), p.
024103
.
You do not currently have access to this content.