Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The three-dimensional flow field in multi-pass channels with and without ribs was measured by magnetic resonance velocimetry (MRV), while heat transfer performance on the endwall of channels in the same geometry was investigated using transient thermochromic liquid crystal (TLC) technique. The evolution of comprehensive three-dimensional flow field and their correlation with local heat transfer enhancement on end wall of multi-pass channels with and without ribs were revealed as a whole picture. Results show that the flow characteristics in the right-angle bend as well as the second pass are dramatically different for the smooth and ribbed channels, resulting in totally different features of heat transfer distribution on the end wall in those two channels. For the smooth channel, strong dean vortices form around the bend region near the outer wall where heat transfer is enhanced substantially. For the ribbed channel, no dean vortex but complex three-dimensional flow presents around bends. Heat transfer downstream of ribs close to the reattachment regions is strengthened noticeably. Comparison between velocity and heat transfer results suggest that one of the principle mechanisms driving heat transfer enhancement is both endwall directed velocity for smooth and ribbed channels, even though they are induced by different flow structures.

References

1.
Han
,
J.-C.
,
2018
, “
Advanced Cooling in Gas Turbines—2016 Max Jakob Memorial Award Paper
,”
ASME J. Heat Transfer
,
140
(
11
), p.
113001
.
2.
Wright
,
L. M.
, and
Han
,
J.-C.
,
2014
, “
Heat Transfer Enhancement for Turbine Blade Internal Cooling
,”
J. Enhanced Heat Transfer
,
21
(
2–3
), pp.
111
140
.
3.
Son
,
S. Y.
,
Kihm
,
K. D.
, and
Han
,
J.-C.
,
2002
, “
PIV Flow Measurements for Heat Transfer Characterization in Two-Pass Square Channels With Smooth and 90 deg Ribbed Walls
,”
Int. J. Heat Mass Transfer
,
45
(
24
), pp.
4809
4822
.
4.
Iacovides
,
H.
,
Kounadis
,
D.
, and
Xu
,
Z.
,
2009
, “
Experimental Study of Thermal Development in a Rotating Square-Ended U-Bend
,”
Exp. Therm. Fluid Sci.
,
33
(
3
), pp.
482
494
.
5.
Pattanaprates
,
N.
,
Juntasaro
,
E.
, and
Juntasaro
,
V.
,
2018
, “
Numerical Investigation on the Modified Bend Geometry of a Rotating Multipass Internal Cooling Passage in a Gas Turbine Blade
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
6
), p.
061003
.
6.
Xie
,
G.
,
Sundén
,
B.
,
Wang
,
L.
, and
Utriainen
,
E.
,
2009
, “
Enhanced Internal Heat Transfer on the Tip-Wall in a Rectangular Two-Pass Channel (AR = 1:2) By Pin-Fin Arrays
,”
Numer. Heat Transfer Part A
,
55
(
8
), pp.
739
761
.
7.
Faizan
,
M.
,
Shuja
,
S. Z.
,
Yilbas
,
B. S.
,
Khan
,
M.
, and
Al-Qahtani
,
H.
,
2021
, “
Flow Analysis of a Rectangular Channel With Triangular and Semi-Spherical Protrusions
,”
Int. J. Therm. Sci.
,
162
, p.
106793
.
8.
Fu
,
W.-L.
,
Wright
,
L. M.
, and
Han
,
J.-C.
,
2006
, “
Rotational Buoyancy Effects on Heat Transfer in Five Different Aspect-Ratio Rectangular Channels With Smooth Walls and 45 Degree Ribbed Walls
,”
ASME J. Heat Transfer
,
128
(
11
), pp.
1130
1141
.
9.
Huh
,
M.
,
Lei
,
J.
,
Liu
,
Y.-H.
, and
Han
,
J.-C.
,
2011
, “
High Rotation Number Effects on Heat Transfer in a Rectangular (AR = 2: 1) Two-Pass Channel
,”
ASME J. Turbomach.
,
133
(
2
), p.
021001
.
10.
Rallabandi
,
A. P.
,
Alkhamis
,
N.
, and
Han
,
J.-C.
,
2011
, “
Heat Transfer and Pressure Drop Measurements for a Square Channel With 45 Deg Round-Edged Ribs at High Reynolds Number
,”
ASME J. Turbomach.
,
133
(
3
), p.
031019
.
11.
Lei
,
J.
,
Han
,
J.-C.
, and
Huh
,
M.
,
2012
, “
Effect of Rib Spacing on Heat Transfer in a Two Pass Rectangular Channel (Ar = 2:1) at High Rotation Numbers
,”
ASME J. Heat Transfer
,
134
(
9
), p.
091901
.
12.
Fu
,
W.-L.
,
Wright
,
L. M.
, and
Han
,
J.-C.
,
2005
, “
Heat Transfer in Two-Pass Rotating Rectangular Channels (AR = 1:2 and AR = 1:4) With 45 Deg Angled Rib Turbulators
,”
ASME J. Turbomach.
,
127
(
1
), pp.
164
174
.
13.
Chen
,
I. L.
,
Wright
,
L. M.
,
Han
,
J.-C.
, and
Krewinkel
,
R.
,
2023
, “
Heat Transfer in a Rotating, Blade-Shaped, Two-Pass Cooling Channel With Various 45-Deg Rib Turbulators and a Tip Turning Vane
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
2
), p.
021014
.
14.
Ghosh
,
S.
,
Wardell
,
R.
,
Mondal
,
S.
,
Fernandez
,
E.
,
Ray
,
A.
, and
Kapat
,
J.
,
2022
, “
Topology Optimization and Experimental Validation of an Additively Manufactured U-Bend Channel
,”
ASME J. Fluids Eng.
,
144
(
7
), p.
071206
.
15.
Kamat
,
H.
,
Shenoy
,
S. B.
, and
Kini
,
C. R.
,
2017
, “
Effect of V-Shaped Ribs on Internal Cooling of Gas Turbine Blades
,”
J. Eng. Technol. Sci.
,
49
(
4
), pp.
520
533
.
16.
Gao
,
T.
,
Zhu
,
J.
,
Li
,
J.
, and
Xia
,
Q.
,
2017
, “
Numerical Study of the Influence of Rib Orientation on Heat Transfer Enhancement in Two-Pass Ribbed Rectangular Channel
,”
Eng. Appl. Comput. Fluid. Mech.
,
12
(
1
), pp.
117
136
.
17.
Qayoum
,
A.
, and
Panigrahi
,
P.
,
2018
, “
Experimental Investigation of Heat Transfer Enhancement in a Two-Pass Square Duct By Permeable Ribs
,”
Heat Transfer Eng.
,
40
(
8
), pp.
640
651
.
18.
Benson
,
M. J.
,
Banko
,
A. J.
,
Elkins
,
C. J.
,
An
,
D.-G.
,
Song
,
S.
,
Bruschewski
,
M.
,
Grundmann
,
S.
,
Borup
,
D. D.
, and
Eaton
,
J. K.
,
2020
, “
The 2019 MRV Challenge: Turbulent Flow Through a U-Bend
,”
Exp. Fluids
,
61
(
148
), pp.
1
17
.
19.
Elkins
,
C. J.
,
Markl
,
M.
,
Pelc
,
N.
, and
Eaton
,
J. K.
,
2003
, “
4D Magnetic Resonance Velocimetry for Mean Velocity Measurements in Complex Turbulent Flows
,”
Exp. Fluids
,
34
(
4
), pp.
494
503
.
20.
Wang
,
P.
,
Pu
,
J.
,
Yu
,
R.
,
Wang
,
J.
,
Wan
,
B.
,
Luo
,
J.
, and
Tian
,
S.
,
2018
, “
An Experimental Investigation on Internal Flow Characteristics in a Realistic and Entire Coolant Channel With Ribs and Film Holes
,”
Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15
, ASME Paper No. GT2018-75715.
21.
Nakayama
,
H.
,
Hirota
,
M.
,
Fujita
,
H.
,
Yamada
,
T.
, and
Koide
,
Y.
,
2006
, “
Fluid Flow and Heat Transfer in Two-Pass Smooth Rectangular Channels With Different Turn Clearances
,”
ASME J. Turbomach.
,
128
(
4
), pp.
772
785
.
22.
Borup
,
D. D.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2017
, “
Transport of Microparticles in a Turbulated Serpentine Passage
,”
Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
, ASME Paper No. GT2017-63491.
23.
Baek
,
S.
,
Ryu
,
J.
,
Bang
,
M.
, and
Hwang
,
W.
,
2022
, “
Flow Non-Uniformity and Secondary Flow Characteristics Within a Serpentine Cooling Channel of a Realistic Gas Turbine Blade
,”
ASME J. Turbomach.
,
144
(
9
), p.
091002
.
24.
Singh
,
P.
,
Li
,
W.
,
Ekkad
,
S. V.
, and
Ren
,
J.
,
2017
, “
Experimental and Numerical Investigation of Heat Transfer Inside Two-Pass Rib Roughened Duct (AR = 1:2) Under Rotating and Stationary Conditions
,”
Int. J. Heat Mass Transfer
,
113
, pp.
384
398
.
25.
Wagner
,
G.
,
Kotulla
,
M.
,
Ott
,
P.
,
Weigand
,
B.
, and
von Wolfersdorf
,
J.
,
2005
, “
The Transient Liquid Crystal Technique: Influence of Surface Curvature and Finite Wall Thickness
,”
ASME J. Turbomach.
,
127
(
1
), pp.
175
182
.
26.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
36310
, pp.
3
8
.
27.
Chyu
,
M. K.
,
1991
, “
Regional Heat Transfer in Two-Pass and Three-Pass Passages With 180-Deg Sharp Turns
,”
ASME J. Heat Transfer
,
113
(
1
), pp.
63
70
.
28.
Zu
,
D. L.
, and
Gao
,
J. H.
,
2014
,
Magnetic Resonance Imaging—Physical Principles and Methods
,
Peking University Press
,
Beijing
.
You do not currently have access to this content.