Abstract

Additive manufacturing (AM) provides the ability to fabricate highly customized internal cooling passages that are relevant to gas turbine components. This experimental study examines the pressure loss and heat transfer performance of a range of fundamental channel shapes that were produced using direct metal laser sintering. Circular, hexagonal, pentagonal, elliptical, diamond, square, rectangular, trapezoidal, and triangular channel cross sections were investigated. To maintain the same convective surface area between shapes, the wetted perimeters of the channel cross sections were kept constant. Parallel computational fluid dynamic simulations were performed to understand the relationships in cooling performance between several channel shapes. Several characteristic length scales were evaluated to scale the pressure loss and heat transfer measurements. Among the channel shapes investigated, the diamond channel showed the lowest Nusselt number and friction factor. The pentagon exhibited a similar Nusselt number as the circular channel despite having a lower friction factor. There was no difference in scaling the friction factor or Nusselt number results of the different channel shapes between using the square root of cross-sectional area compared to hydraulic diameter as the characteristic length scale

References

1.
Liang
,
D.
,
He
,
G.
,
Chen
,
W.
,
Chen
,
Y.
, and
Chyu
,
M. K.
,
2022
, “
Fluid Flow and Heat Transfer Performance for Micro-Lattice Structures Fabricated by Selective Laser Melting
,”
Int. J. Therm. Sci.
,
172
, p.
107312
.
2.
Parbat
,
S.
,
Min
,
Z.
,
Yang
,
L.
, and
Chyu
,
M.
,
2020
, “
Experimental and Numerical Analysis of Additively Manufactured Inconel 718 Coupons With Lattice Structure
,”
ASME J. Turbomach.
,
142
(
6
), p. 061004.
3.
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2018
, “
Experimental Investigation of Numerically Optimized Wavy Microchannels Created Through Additive Manufacturing
,”
ASME J. Turbomach.
,
140
(
2
), p.
021002
.
4.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Build Direction Effects on Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051006
.
5.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Scaling Roughness Effects on Pressure Loss and Heat Transfer of Additively Manufactured Channels
,”
ASME J. Turbomach.
,
139
(
2
), p.
021003
.
6.
Wildgoose
,
A. J.
,
Thole
,
K. A.
,
Sanders
,
P.
, and
Wang
,
L.
,
2021
, “
Impact of Additive Manufacturing on Internal Cooling Channels With Varying Diameters and Build Directions
,”
ASME J. Turbomach.
,
143
(
7
), p.
071003
.
7.
Duan
,
Z.
,
Yovanovich
,
M. M.
, and
Muzychka
,
Y. S.
,
2012
, “
Pressure Drop for Fully Developed Turbulent Flow in Circular and Noncircular Ducts
,”
ASME J. Fluids Eng
,
134
(
6
), p.
061201
.
8.
Sarmiento
,
A. P. C.
,
Soares
,
V. H. T.
,
Milanez
,
F. H.
, and
Mantelli
,
M. B. H.
,
2020
, “
Heat Transfer Correlation for Circular and Non-Circular Ducts in the Transition Regime
,”
Int. J. Heat Mass Transfer
,
149
, p.
119165
.
9.
McHale
,
J. P.
, and
Garimella
,
S. V.
,
2010
, “
Heat Transfer in Trapezoidal Microchannels of Various Aspect Ratios
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
365
375
.
10.
Wang
,
P.
,
Yang
,
M.
,
Wang
,
Z.
, and
Zhang
,
Y.
,
2014
, “
A New Heat Transfer Correlation for Turbulent Flow of Air with Variable Properties in Noncircular Ducts
,”
ASME J. Heat Transfer
,
136
(
10
), p.
101701
.
11.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
,
2009
, “
Pressure Drop in Laminar Developing Flow in Noncircular Ducts: A Scaling and Modeling Approach
,”
ASME J. Fluids Eng.
,
131
(
11
), p.
111105
.
12.
Nikuradse
,
J.
,
1926
, “
Untersuchungen Uber Die Geschwindigkeitsverteilung in Turbulenten Stromungen
,”
Forschungsarbeiten auf dem Gebiete des Ingenieurwesens
281
).
13.
Leung
,
C. W.
, and
Probert
,
S. D.
,
1997
, “
Forced-Convective Turbulent-Flows Through Horizontal Ducts With Isosceles-Triangular Internal Cross-Sections
,”
Appl. Energy
,
57
(
1
), pp.
13
24
.
14.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Bernhard
,
W.
,
2005
,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
Boston
.
15.
Jones
,
O. C.
,
1976
, “
An Improvement in the Calculation of Turbulent Friction in Rectangular Ducts
,”
J. Fluids Eng.
,
98
(
2
), pp.
173
180
.
16.
Duan
,
Z.
,
2012
, “
New Correlative Models for Fully Developed Turbulent Heat and Mass Transfer in Circular and Noncircular Ducts
,”
ASME J. Heat Transfer
,
134
(
1
), p.
014503
.
17.
Leung
,
C. W.
,
Wong
,
T. T.
, and
Kang
,
H. J.
,
1998
, “
Forced Convection of Turbulent Flow in Triangular Ducts With Different Angles and Surface Roughnesses
,”
Heat Mass Transfer und Stoffuebertragung
,
34
(
1
), pp.
63
68
.
18.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D. J.
,
2015
, “
Build Direction Effects on Microchannel Tolerance and Surface Roughness
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111411
.
19.
Klingaa
,
C. G.
,
Bjerre
,
M. K.
,
Baier
,
S.
,
De Chiffre
,
L.
,
Mohanty
,
S.
, and
Hattel
,
J. H.
,
2019
, “
Roughness Investigation of SLM Manufactured Conformal Cooling Channels Using X-Ray Computed Tomography
,”
Proceedings of the 9th Conference on Industrial Computer Tomography
,
Padova, Italy
,
Feb. 13–15
.
20.
Zhang
,
B.
,
Li
,
L.
, and
Anand
,
S.
,
2020
, “
Distortion Prediction and NURBS Based Geometry Compensation for Reducing Part Errors in Additive Manufacturing
,”
Procedia Manuf.
,
48
, pp.
706
717
.
21.
Kamat
,
A. M.
, and
Pei
,
Y.
,
2019
, “
An Analytical Method to Predict and Compensate for Residual Stress-Induced Deformation in Overhanging Regions of Internal Channels Fabricated Using Powder Bed Fusion
,”
Addit. Manuf.
,
29
, p.
100796
.
22.
Thole
,
K. A.
,
Lynch
,
S.
, and
Wildgoose
,
A. J.
,
2021
, “
Review of Advances in Convective Heat Transfer Developed Through Additive Manufacturing
,”
Adv. Heat Transfer
,
53
, pp.
249
325
.
23.
EOS
,
2011
,
Technical Description EOSINT M280
,
EOS
.
24.
Kleszczynski
,
S.
,
Ladewig
,
A.
,
Friedberger
,
K.
,
Zur Jacobsmühlen
,
J.
,
Merhof
,
D.
, and
Witt
,
G.
,
2015
, “
Position Dependency of Surface Roughness in Parts From Laser Beam
,”
Proceedings of the 2015 International Solid Freeform Fabrication Symposium
,
Austin, TX
, pp.
360
370
.
25.
Volume Graphics
,
2021
, “VGStudio MAX”.
26.
Reinhart
,
C.
,
2011
,
Industrial CT & Precision
,
Volume Graphics GmbH
,
Heidelberg, Germany
.
27.
Wildgoose
,
A. J.
,
Thole
,
K. A.
,
Subramanian
,
R.
,
Kerating
,
L.
, and
Kulkarni
,
A.
,
2022
, “
Impacts of the Additive Manufacturing Process on the Roughness of Engine Scale Vanes and Cooling Channels
,”
Under Rev. Proc. ASME Turbo Expo
, GT2022-82298.
28.
Klingaa
,
C. G.
,
Bjerre
,
M. K.
,
Baier
,
S.
,
De Chiffre
,
L.
,
Mohanty
,
S.
, and
Hattel
,
J. H.
,
2019
, “
Roughness Investigation of SLM Manufactured Conformal Cooling Channels Using X-Ray Computed Tomography
,”
Proceedings of the 9th Conference on Industrial Computer Tomography
,
Padova, Italy
,
Feb. 13–15
.
29.
Klingaa
,
C. G.
,
Dahmen
,
T.
,
Baier-Stegmaier
,
S.
,
Mohanty
,
S.
, and
Hattel
,
J. H.
,
2020
, “
Investigation of the Roughness Variation Along the Length of LPBF Manufactured Straight Channels
,”
Nondestruct. Test. Eval.
,
35
(
3
), pp.
304
314
.
30.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051008
.
31.
Munson
,
R.
,
Young
,
B.
,
and Okiishi
,
D. F.
, and
H
,
T.
,
1990
,
Fundamentals of Fluid Mechanics
,
Wiley & Sons
,
Hoboken, NJ
.
32.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2005
,
Theory and Design for Mechanical Measurments
,
Wiley & Sons
,
Hoboken, NJ
.
33.
ANSYS
,
2020
,
ANSYS FLUENT
,
Canonsburg, PA
.
34.
Deprati
,
F.
,
2021
, “
Direct Numerical Simulation of Flow and Heat Transfer in Complex Ducts
,”
Aerotec. Missili Spaz.
,
100
(
3
), pp.
263
276
.
35.
Li
,
Y. K.
,
Zheng
,
Z. Y.
,
Zhang
,
H. N.
,
Li
,
F. C.
,
Qian
,
S.
,
Joo
,
S. W.
, and
Kulagina
,
L. V.
,
2017
, “
Numerical Study on Secondary Flows of Viscoelastic Fluids in Straight Ducts: Origin Analysis and Parametric Effects
,”
Comput. Fluids
,
152
, pp.
57
73
.
You do not currently have access to this content.