Abstract

The current study involves numerical and experimental investigations of circular in-line jets impinging on a heated flat plate. The generic configuration is characterized by nine jets, each with a diameter of D = 0.0152 m. The jets are influenced by a self-generating crossflow and are positioned at a nozzle-to-plate distance (H/D) of 5 and a jet pitch (p/D) of 5. The steady Reynolds-averaged Navier–Stokes (RANS) simulations are performed for turbulent jet Reynolds numbers with the in-house CFD code TRACE. The Menter k–ω shear stress transport (SST) model is applied for turbulence modeling and the turbulent scalar fluxes are modeled based on the Reynolds analogy for a constant turbulent Prandtl number. To gain a closer insight into the impingement jet physics, high-resolution near-wall velocity and thermal fields are obtained through large eddy simulations (LESs) and measurements from particle image velocimetry (PIV). Focus is laid on the comparison of RANS results with the LES data and the experimental data. The results exhibit a qualitative similarity between the simulations and the experiments. Furthermore, correlations of the Nusselt number from the literature are used to validate the simulation results.

References

1.
Brakmann
,
R.
,
Chen
,
L.
,
Weigand
,
B.
, and
Crawford
,
M.
,
2016
, “
Experimental and Numerical Heat Transfer Investigation of an Impinging Jet Array on a Target Plate Roughened by Cubic Micro Pin Fins
,”
ASME J. Turbomach.
,
138
(
11
), p.
111010
.
2.
Xing
,
Y.
, and
Weigand
,
B.
,
2010
, “
Experimental Investigation on Staggered Impingement Heat Transfer on a Rib Roughened Plate With Different Crossflow Schemes
,”
Turbo Expo: Power for Land, Sea, and Air
,
Glasgow, UK
,
June 14–18
, Vol. 4, No. 6, pp.
1
11
.
3.
Otero-Pérez
,
J. J.
,
Sandberg
,
R. D.
,
Mizukami
,
S.
, and
Tanimoto
,
K.
,
2021
, “
High-Fidelity Simulations of Multi-jet Impingement Cooling Flows
,”
ASME J. Turbomach.
,
143
(
8
), p.
081011
.
4.
Masip
,
Y.
,
Campo
,
A.
, and
Nuñez
,
S. M.
,
2020
, “
Experimental Analysis of the Thermal Performance on Electronic Cooling by a Combination of Cross-Flow and an Impinging Air Jet
,”
Appl. Therm. Eng.
,
167
, p.
114779
.
5.
Wang
,
C.
,
Wang
,
Z.
,
Wang
,
L.
,
Luo
,
L.
, and
Sundén
,
B.
,
2019
, “
Experimental Study of Fluid Flow and Heat Transfer of Jet Impingement in Cross-Flow With a Vortex Generator Pair
,”
Int. J. Heat Mass Transfer
,
135
, pp.
935
949
.
6.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.
7.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Adv. Heat Transfer
,
39
, pp.
565
631
.
8.
Dutta
,
R.
,
Dewan
,
A.
, and
Srinivasan
,
B.
,
2013
, “
Comparison of Various Integration to Wall (ITW) RANS Models for Predicting Turbulent Slot Jet Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
65
, pp.
750
764
.
9.
Hossain
,
J.
,
Fernandez
,
E.
,
Garrett
,
C.
, and
Kapat
,
J.
,
2017
, “
Flow and Heat Transfer Analysis in a Single Row Narrow Impingement Channel: Comparison of Particle Image Velocimetry, Large Eddy Simulation, and RANS to Identify RANS Limitations
,”
ASME J. Turbomach.
,
140
(
3
), p.
031010
.
10.
Singh
,
P.
,
Grover
,
N. K.
,
Agarwal
,
V.
,
Sharma
,
S.
,
Singh
,
J.
,
Sadeghzadeh
,
M.
, and
Issakhov
,
A.
,
2021
, “
Computational Fluid Dynamics Analysis of Impingement Heat Transfer in an Inline Array of Multiple Jets
,”
Math. Problems Eng.
,
2021
, p.
6668942
.
11.
Penumadu
,
P. S.
, and
Rao
,
A. G.
,
2017
, “
Numerical Investigations of Heat Transfer and Pressure Drop Characteristics in Multiple Jet Impingement System
,”
Appl. Therm. Eng.
,
110
, pp.
1511
1524
.
12.
Huang
,
H.
,
Sun
,
T.
,
Zhang
,
G.
,
Sun
,
L.
, and
Zong
,
Z.
,
2018
, “
Modeling and Computation of Turbulent Slot Jet Impingement Heat Transfer Using RANS Method With Special Emphasis on the Developed SST Turbulence Model
,”
Int. J. Heat Mass Transfer
,
126
, pp.
589
602
.
13.
Kubacki
,
S.
, and
Dick
,
E.
,
2011
, “
Hybrid RANS/LES of Flow and Heat Transfer in Round Impinging Jets
,”
Int. J. Heat Fluid Flow
,
32
(
6
), pp.
631
651
.
14.
Rao
,
Y.
,
Chen
,
P.
, and
Wan
,
C.
,
2016
, “
Experimental and Numerical Investigation of Impingement Heat Transfer on the Surface With Micro W-Shaped Ribs
,”
Int. J. Heat Mass Transfer
,
93
, pp.
683
694
.
15.
Chen
,
L.
,
Brakmann
,
R.
,
Weigand
,
B.
,
Rodriguez
,
J.
,
Crawford
,
M.
, and
Poser
,
R.
,
2017
, “
Experimental and Numerical Heat Transfer Investigation of an Impingement Jet Array With V-Ribs on the Target Plate and on the Impingement Plate
,”
Int. J. Heat Fluid Flow
,
68
(
12
), pp.
126
138
.
16.
Terzis
,
A.
,
Skourides
,
C.
,
Ott
,
P.
,
von Wolfersdorf
,
J.
, and
Weigand
,
B.
,
2016
, “
Aerothermal Investigation of a Single Row Divergent Narrow Impingement Channel by Particle Image Velocimetry and Liquid Crystal Thermography
,”
ASME J. Turbomach.
,
138
(
5
), p.
051003
.
17.
Adrian
,
R. J.
,
1991
, “
Particle-Imaging Techniques for Experimental Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
23
, pp.
261
304
.
18.
Raffel
,
M.
,
Willert
,
C.
,
Kähler
,
C.
,
Scarano
,
F.
,
Wereley
,
S.
, and
Kompenhans
,
J.
,
2018
,
Particle Image Velocimetry: A Practical Guide
(3rd ed.),
Springer-Verlag
,
Berlin
.
19.
Westerweel
,
J.
,
2002
, “
Theoretical Analysis of the Measurement Precision in Particle Image Velocimetry
,”
Exp. Fluids
,
29
, pp.
S3
S12
.
20.
Geiser
,
G.
,
Wellner
,
J.
,
Kügeler
,
E.
,
Weber
,
A.
, and
Moors
,
A.
,
2019
, “
On the Simulation and Spectral Analysis of Unsteady Turbulence and Transition Effects in a Multistage Low Pressure Turbine
,”
ASME J. Turbomach.
,
141
(
5
), p.
051012
.
21.
Menter
,
F.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbulence, Heat and Mass Transfer
,
4
, p.
1
.
22.
Langtry
,
R.
, and
Menter
,
F.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
, p.
12
.
23.
Langtry
,
R.
,
Menter
,
F.
, and
Völker
,
S.
,
2006
, “
Transition Modelling for General Purpose CFD Codes
,”
Flow Turbulence Combust.
,
77
(
11
), pp.
277
303
.
24.
Kato
,
M.
, and
Launder
,
B.
,
1993
, “
The Modelling of Turbulent Flow Around Stationary and Vibrating Square Cylinders
,”
Ninth Symposium on "Turbulent Shear Flows"
,
Kyoto, Japan
,
Aug. 16–18
.
25.
Centaur
, https://www.centaursoft.com, Accessed January 26, 2023.
26.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.
27.
van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov’s Method
,”
J. Comput. Phys.
,
32
(
1
), pp.
101
136
.
28.
Roe
,
P.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.
29.
Franck
,
N.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbulence Combust.
,
62
(
3
), pp.
183
200
.
30.
Schlüß
,
D.
,
Frey
,
C.
, and
Ashcroft
,
G.
,
2016
, “
Consistent Non-reflecting Boundary Conditions for Both Steady and Unsteady Flow Simulations in Turbomachinery Applications
,”
VII European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS
,
Crete, Greece
,
June 5–10
.
31.
Anton
,
W.
, and
Marcel
,
S.
,
2016
, “
Pymesh—Template Documentation. Technical Report Dlr-ib-at-kp-2016-34
,”
German Aerospace Center (DLR)
, p.
2
.
32.
Georgiadis
,
N. J.
,
Rizzetta
,
D. P.
, and
Fureby
,
C.
,
2010
, “
Large-Eddy Simulation: Current Capabilities, Recommended Practices, and Future Research
,”
AIAA J.
,
48
(
8
), pp.
1772
1784
.
33.
Fröhlich
,
J.
,
Mellen
,
C. P.
,
Rodi
,
W.
,
Temmerman
,
L.
, and
Leschziner
,
M. A.
,
2005
, “
Highly Resolved Large-Eddy Simulation of Separated Flow in a Channel With Streamwise Periodic Constrictions
,”
J. Fluid Mech.
,
526
, pp.
19
66
.
34.
Bergmann
,
M.
,
Morsbach
,
C.
,
Ashcroft
,
G.
, and
Kügeler
,
E.
,
2022
, “
Statistical Error Estimation Methods for Engineering-Relevant Quantities From Scale-Resolving Simulations
,”
ASME J. Turbomach.
,
144
(
3
), p.
031005
.
35.
Duraisamy
,
K.
,
Singh
,
A.
, and
Pan
,
S.
,
2017
, “
Augmentation of Turbulence Models Using Field Inversion and Machine Learning
,”
55th AIAA Aerospace Sciences Meeting
,
Grapevine, TX
,
Jan. 9–13
.
36.
Nishino
,
K.
,
Samada
,
M.
,
Kasuya
,
K.
, and
Torii
,
K.
,
1996
, “
Turbulence Statistics in the Stagnation Region of an Axisymmetric Impinging Jet Flow
,”
Int. J. Heat Fluid Flow
,
17
(
3
), pp.
193
201
.
37.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.
38.
Geers
,
L.
,
Tummers
,
M.
,
Bueninck
,
T.
, and
Hanjalić
,
K.
,
2008
, “
Heat Transfer Correlation for Hexagonal and In-Line Arrays of Impinging Jets
,”
Int. J. Heat Mass Transfer
,
51
(
21–22
), pp.
5389
5399
.
39.
Meola
,
C.
,
2009
, “
A New Correlation of Nusselt Number for Impinging Jets
,”
Heat Transfer Eng.
,
30
(
3
), pp.
221
228
.
40.
Wen
,
M.-Y.
, and
Jang
,
K.-J.
,
2003
, “
An Impingement Cooling on a Flat Surface by Using Circular Jet With Longitudinal Swirling Strips
,”
Int. J. Heat Mass Transfer
,
46
(
24
), pp.
4657
4667
.
41.
Mohanty
,
A.
, and
Tawfek
,
A.
,
1993
, “
Heat Transfer Due to a Round Jet Impinging Normal to a Flat Surface
,”
Int. J. Heat Mass Transfer
,
36
(
6
), pp.
1639
1647
.
42.
Goldstein
,
R.
, and
Behbahani
,
A.
,
1982
, “
Impingement of a Circular Jet With and Without Cross Flow
,”
Int. J. Heat Mass Transfer
,
25
(
9
), pp.
1377
1382
.
43.
Straub
,
S.
,
Forooghi
,
P.
,
Marocco
,
L.
,
Wetzel
,
T.
,
Vinuesa
,
R.
,
Schlatter
,
P.
, and
Frohnapfel
,
B.
,
2019
, “
The Influence of Thermal Boundary Conditions on Turbulent Forced Convection Pipe Flow at Two Prandtl Numbers
,”
Int. J. Heat Mass Transfer
,
144
, p.
118601
.
44.
Otero-Pérez
,
J. J.
, and
Sandberg
,
R. D.
,
2020
, “
Compressibility and Variable Inertia Effects on Heat Transfer in Turbulent Impinging Jets
,”
J. Fluid Mech.
,
887
, p.
A15
.
45.
CalculiX
, http://www.dhondt.de/, Accessed December 15, 2021.
You do not currently have access to this content.