Abstract

Turbomachinery components are inevitably subjected to various sources of manufacturing errors. The resultant variations in blade geometry eventually lead to performance degradation. This is especially true for transonic centrifugal compressor impellers where the complex interaction between the geometric variations and shock waves may amplify such degradation. However, relevant studies on uncertainty quantification or robust design optimization of centrifugal impellers are quite rare. The mechanisms of how the realistic manufacturing errors influence the impeller aerodynamic performance are not clear. In addition, most existing studies have considered a fixed level of manufacturing tolerance applied to the impeller blade surface, which neglects the combined effect of blade geometry and manufacturing tolerance on impeller performance. In this study, a collaborative robust design optimization was performed for a transonic centrifugal impeller considering realistic manufacturing errors. The realistic manufacturing error field was first modeled based on the measurements of 92 centrifugal impellers. With a combination of computational fluid dynamics simulation and the non-intrusive polynomial chaos method, the influence of manufacturing errors on impeller performance and flow field variations was quantified. To save computational costs for the uncertainty quantification, a dual dimensionality reduction method was proposed to reduce the dimensionality of uncertainties. Finally, blade angles and the manufacturing tolerance of the impeller were collaboratively optimized to enhance the impeller performance robustness against manufacturing errors. The results show that the impeller aerodynamic performance exhibited a downward trend in the presence of manufacturing errors. The flow mechanisms responsible for this trend were mainly associated with increased intensity of the shock waves near the inducer blade tip. Such shock waves were significantly alleviated by reducing impeller inlet blade angles without the loss of pressure rise capability. Consequently, the impeller performance robustness against manufacturing errors was enhanced with the standard deviation of polytropic efficiency being reduced by 35% at a lower anticipated manufacturing cost due to increased tolerance allowance.

References

1.
Wang
,
J.
, and
Zheng
,
X.
,
2020
, “
Review of Geometric Uncertainty Quantification in Gas Turbine
,”
ASME J. Eng. Gas Turbine Power
,
142
(
7
), p.
070801
.
2.
Montomoli
,
F.
,
Carnevale
,
M.
,
D’Ammaro
,
A.
,
Massini
,
M.
, and
Salvadori
,
S.
,
2019
,
Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines
,
Springer
,
Cham, Switzerland
.
3.
Garzon
,
V.
, and
Darmofal
,
D.
,
2003
, “
Impact of Geometrical Variability on Axial Compressor Performance
,”
ASME J. Turbomach.
,
125
(
4
), pp.
692
703
.
4.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Schrapp
,
H.
,
Johann
,
E.
, and
Gümmer
,
V.
,
2010
, “
Probabilistic CFD Simulation of a High-Pressure Compressor Stage Taking Manufacturing Variability into Account
,” ASME Paper No. GT2010-22484.
5.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Schrapp
,
H.
,
Johann
,
E.
, and
Gümmer
,
V.
,
2012
, “
Impact of Manufacturing Variability on Multi-Stage High-Pressure Compressor Performance
,” ASME Paper No. GT2012-69517.
6.
Phan
,
H. M.
,
2022
, “
Modeling of a Turbine Bladerow With Stagger Angle Variation Using the Multi-Fidelity Influence Superposition Method
,”
Aerosp. Sci. Technol.
,
127
, p.
107318
.
7.
Kamenik
,
J.
,
Voutchkov
,
I.
,
Toal
,
D. J.
,
Keane
,
A.
,
Högner
,
L.
,
Meyer
,
M.
, and
Bates
,
R.
,
2018
, “
Robust Turbine Blade Optimization in the Face of Real Geometric Variations
,”
J. Propuls. Power
,
34
(
6
), pp.
1479
1493
.
8.
Büche
,
D.
,
Beetz
,
M.
, and
Ribi
,
B.
,
2010
, “
Uncertainty Analysis for Large-Scale Industrial Radial Compressors
,” ASME Paper No. GT2010-22918.
9.
Panizza
,
A.
,
Iurisci
,
G.
,
Sassanelli
,
G.
, and
Sicasubramaniyan
,
S.
,
2012
, “
Performance Uncertainty Quantification for Centrifugal Compressor: Part 1—Stage Performance Variation
,” ASME Paper No. GT2012-68036. .
10.
Panizza
,
A.
,
Rubino
,
D.
, and
Tapinassi
,
L.
,
2014
, “
Efficient Uncertainty Quantification of Centrifugal Compressor Performance Using Polynomial Chaos
,” ASME Paper No. GT2014-25081.
11.
Panizza
,
A.
,
Valente
,
R.
,
Rubino
,
D.
, and
Tapinassi
,
L.
,
2016
, “
Impact of Manufacturing Variability on the Aerodynamic Performance of a Centrifugal Compressor Stage With Curvilinear Blades
,” ASME Paper No. GT2016-57791.
12.
Van Lil
,
T.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Wacker
,
C.
, and
Rockstroch
,
U.
,
2012
, “
Probabilistic Analysis of Radial Gear Compressors
,” ASME Paper No. GT2012-69647.
13.
Javed
,
A.
,
Pecnik
,
R.
, and
Van Buijtenen
,
J. P.
,
2016
, “
Optimization of a Centrifugal Compressor Impeller for Robustness to Manufacturing Uncertainties
,”
ASME J. Eng. Gas Turbines Power
,
138
(
11
), p.
112101
.
14.
Ju
,
Y.
,
Liu
,
Y.
,
Jiang
,
W.
, and
Zhang
,
C.
,
2021
, “
Aerodynamic Analysis and Design Optimization of a Centrifugal Compressor Impeller Considering Realistic Manufacturing Uncertainties
,”
Aerosp. Sci. Technol.
,
115
(
2021
), p.
106787
.
15.
Dow
,
E. A.
, and
Wang
,
Q.
,
2015
, “
The Implications of Tolerance Optimization on Compressor Blade Design
,”
ASME J. Turbomach.
,
137
(
10
), p.
101008
.
16.
Carl Zeiss Industrielle Messtechnik GmbH
, http://www.zeiss.de/messtechnik.
17.
Ghasemi
,
A.
, and
Zahediasl
,
S.
,
2012
, “
Normality Tests for Statistical Analysis: A Guide for Non-Statisticians
,”
Int. J. Endocrinol. Met.
,
10
(
2
), pp.
486
489
.
18.
Liu
,
Y.
,
Qin
,
R.
,
Ju
,
Y.
,
Spence
,
S.
, and
Zhang
,
C.
,
2020
, “
Impact of Realistic Manufacturing Uncertainties on the Aerodynamic Performance of a Transonic Centrifugal Impeller
,” ASME Paper No. GT2020-14784. .
19.
Ziegler
,
K. U.
,
Gallus
,
H. E.
, and
Niehuis
,
R.
,
2003
, “
A Study on Impeller-Diffuser Interaction—Part I: Influence on the Performance
,”
ASME J. Turbomach.
,
125
(
1
), pp.
173
182
.
20.
Ziegler
,
K. U.
,
Gallus
,
H. E.
, and
Niehuis
,
R.
,
2003
, “
A Study on Impeller-Diffuser Interaction—Part II: Detailed Flow Analysis
,”
ASME J. Turbomach.
,
125
(
1
), pp.
183
192
.
21.
Gibson
,
L.
,
Galloway
,
L.
,
Kim
,
S. i.
, and
Spence
,
S.
,
2017
, “
Assessment of Turbulence Model Predictions for a Centrifugal Compressor Simulation
,”
J. Glob. Power Propuls. Soc.
,
1
, pp.
142
156
.
22.
Qin
,
R.
,
Ju
,
Y.
,
Spence
,
S.
, and
Zhang
,
C.
,
2021
, “
Metamodel-Driven Data Mining Model to Support Three-Dimensional Design of Centrifugal Compressor Stage
,”
ASME J. Turbomach.
,
143
(
12
), p.
121013
.
23.
Celik
,
I. B.
,
Ghia
,
U.
, and
Roache
,
P. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty due to Discretization in CFD Applications
,”
ASME J. Fluid Eng.
,
130
(
7
), p.
078001
.
24.
Hanimann
,
L.
,
Casartelli
,
E.
, and
Mangani
,
L.
,
2014
, “
Reviewing the Implicit Mixing Plane Approach: Theoretical and Applied Cases
,” ASME Paper No. GT2014-25869.
25.
Qin
,
R.
,
Ju
,
Y.
,
Galloway
,
L.
,
Spence
,
S.
, and
Zhang
,
C.
,
2020
, “
High Dimensional Matching Optimization of Impeller-Vaned Diffuser Interaction for a Centrifugal Compressor Stage
,”
ASME J. Turbomach.
,
142
(
12
), p.
121004
.
26.
Maître
,
O. L.
, and
Knio
,
O. M.
,
2010
,
Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics
,
Springer
,
Dordrecht, The Netherlands
.
27.
Ghise
,
T.
, and
Shahpar
,
S.
,
2018
, “
Affordable Uncertainty Quantification for Industrial Problems: Application to Aero-Engine Fan
,”
ASME J. Turbomach.
,
140
(
6
), p.
061005
.
28.
Zhang
,
W.
,
Wang
,
Q.
,
Zeng
,
F.
, and
Yan
,
C.
,
2021
, “
An Adaptive Sequential Enhance PCE Approach and Its Application in Aerodynamic Uncertainty Quantification
,”
Aerosp. Sci. Technol.
,
117
(
10
), p.
106911
.
29.
Hosder
,
S.
,
Walter
,
E.
, and
Balch
,
M.
,
2007
, “
Efficient Sampling for Non-Intrusive Polynomial Chaos Applications With Multiple Uncertain Input Variables
,”
Proceedings of the 48th AIAA/ASME/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Paper No. AIAA 2007-1939.
30.
Berlinet
,
A.
, and
Agna
,
C. T.
,
2004
,
Reproducing Kernel Hilbert Spaces in Probability and Statistics
,
Springer
,
New York
.
31.
Schillings
,
C.
,
Schmidt
,
S.
, and
Schulz
,
V.
,
2011
, “
Efficient Shape Optimization for Certain and Uncertain Aerodynamic Design
,”
Comput. Fluids
,
46
(
1
), pp.
78
87
.
32.
Wunsch
,
D.
,
Nigro
,
R.
,
Coussement
,
G.
, and
Hirsch
,
C.
,
2019
, “Non-Intrusive Probabilistic Collocation Methods for Operational, Geometrical, and Manufacturing Uncertainties in Engineering Practice,”
Uncertainty Management for Robust Industrial Design in Aeronautics
,
140
,
C.
Hirsch
,
D.
Wunsch
,
J.
Szumbarski
,
Ł.
Łaniewski-Wołłk
, and
J.
Pons-Prats
, eds.,
Springer
,
Cham
, pp.
143
167
.
33.
Hehn
,
A.
,
Mosdzien
,
M.
,
Grates
,
D.
, and
Jeschke
,
P.
,
2018
, “
Aerodynamic Optimization of a Transonic Centrifugal Compressor by Using Arbitrary Blade Surfaces
,”
ASME J. Turbomach.
,
150
(
4
), p.
051011
.
34.
Luo
,
J.
,
Xia
,
Z.
, and
Liu
,
F.
,
2021
, “
Robust Design Optimization Considering Inlet Flow Angle Variations of a Turbine Cascade
,”
Aerosp. Sci. Technol.
,
116
, p.
106893
.
35.
Zhang
,
J.
,
Tang
,
H.
, and
Chen
,
M.
,
2021
, “
Robust Design of an Adaptive Cycle Engine Performance Under Component Performance Uncertainty
,”
Aerosp. Sci. Technol.
,
113
, p.
106704
.
36.
Ju
,
Y.
,
Zhang
,
C.
, and
Chi
,
X.
,
2012
, “
Optimization of Centrifugal Impeller for Uniform Design Discharge Flow and Wide Operating Range
,”
J. Propul. Power
,
28
(
5
), pp.
888
899
.
37.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
J. Mech. Design
,
129
(
4
), pp.
370
380
.
38.
Ju
,
Y.
, and
Zhang
,
C.
,
2011
, “
Multi-Point and Multi-Objective Optimization Design Methods for Industrial Axial Compressor Cascades
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
225
(
6
), pp.
1481
1493
.
39.
Ju
,
Y.
,
Qin
,
R.
,
Kipouros
,
T.
,
Parks
,
G.
, and
Zhang
,
C.
,
2016
, “
A High-Dimensional Design Optimization Method for Centrifugal Impeller
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
230
(
3
), pp.
272
288
.
40.
Liu
,
H.
,
Ong
,
Y. S.
, and
Cai
,
J.
,
2018
, “
A Survey of Sampling for Global Metamodeling in Support of Simulation-Based Complex Engineering Design
,”
Struct. Multidiscip. Optim.
,
57
(
1
), pp.
393
416
.
41.
Stanitz
,
J. D.
, and
Prain
,
V. D.
,
1951
, “
A Rapid Approximation Method for Determining Velocity Distribution on Impeller Blades of Centrifugal Compressor
,” NACA TN 2421.
You do not currently have access to this content.