Abstract

Ceramic matrix composite (CMC) components enable high turbine entry temperatures, which can lead to improved efficiencies in gas turbines. Implementing film cooling over CMC components, similar to how it is employed for conventional metal components, can extend part life and push operating temperatures beyond the temperature capabilities of CMCs alone. However, CMCs have a unique surface topology that can influence film cooling performance. Often this topology takes the form of an irregular wavy pattern due to the weave of the fibers that make up the strengthening component of the composite. In this study, shaped 7–7–7 film cooling holes are embedded in a five-harness-satin weave pattern representative of a CMC, at two orientations of the pattern. Detailed adiabatic film effectiveness measurements are obtained in a wind tunnel using an infrared camera while near-wall flowfield measurements are obtained with a high-speed particle image velocimetry system. A range of blowing ratios between one and three are investigated at a density ratio of 1.5 and freestream turbulence intensities of 0.5% and 13%. Across the majority of the tested conditions, the CMC surfaces result in lower film cooling performance than a smooth surface. At a freestream turbulence intensity of 0.5%, the adiabatic film effectiveness is moderately insensitive to the blowing ratio for both weave orientations. The boundary layer over the CMC surfaces increases the mixing between the coolant and the mainstream through a combination of increased turbulence, reduced near-wall velocities, and a thicker boundary layer.

References

1.
Levine
,
S. R.
,
1992
, “
Ceramics and Ceramic Matrix Composites—Aerospace Potential and Status
,”
Proceedings of the Structures, Structural Dynamics and Materials Conference
,
Dallas, TX,
AIAA Paper No. AIAA-92-2445-CP, pp.
1942
1947
.
2.
Krenkel
,
W.
,
2008
,
Ceramic Matrix Composites Fiber Reinforced Ceramics and Their Applications
,
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim, Germany
.
3.
Wilkins
,
P. H.
,
Lynch
,
S. P.
,
Thole
,
K. A.
,
Quach
,
S.
, and
Vincent
,
T.
,
2020
, “
Experimental Heat Transfer and Boundary Layer Measurements on a Ceramic Matrix Composite Surface
,”
ASME J. Turbomach.
,
143
(
6
), p.
061010
.
4.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2014
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
Proceedings of the ASME Turbo Expo
,
Dusseldorf, Germany
,
June 16–20
, ASME Paper No. GT2014-25992.
5.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2016
, “
Effect of High Freestream Turbulence on Flowfields of Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
138
(
9
), p.
091001
.
6.
Bryant
,
C. E.
, and
Rutledge
,
J. L.
,
2021
, “
Conjugate Heat Transfer Simulations to Evaluate the Effect of Anisotropic Thermal Conductivity on Overall Cooling Effectiveness
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
6
), p.
061013
.
7.
Tu
,
Z.
,
Mao
,
J.
, and
Han
,
X.
,
2017
, “
Numerical Study of Film Cooling Over a Flat Plate With Anisotropic Thermal Conductivity
,”
Appl. Therm. Eng.
,
111
, pp.
968
980
.
8.
Tu
,
Z.
,
Mao
,
J.
,
Han
,
X.
, and
He
,
Z.
,
2019
, “
Experimental Study of Film Cooling Over a Fiber-Reinforced Composite Plate With Anisotropic Thermal Conductivity
,”
Appl. Therm. Eng.
,
148
, pp.
447
456
.
9.
Prokein
,
D.
,
von Wolfersdorf
,
J.
,
Dittert
,
C.
, and
Böhrk
,
H.
,
2018
, “
Transpiration Cooling Experiments on a CMC Wall Segment in a Supersonic Hot Gas Channel
,”
International Energy Conversion Engineering Conference
,
Cincinnati, OH
,
July 9–11
, AIAA Paper No. AIAA 2018-4696.
10.
Zhong
,
F.
, and
Brown
,
G. L.
,
2009
, “
Experimental Study of Multi-Hole Cooling for Integrally-Woven, Ceramic Matrix Composite Walls for Gas Turbine Applications
,”
Int. J. Heat Mass Transf.
,
52
(
3–4
), pp.
971
985
.
11.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
,
Chiang
,
H. D.
, and
Elovic
,
E.
,
1985
, “
Effect of Surface Roughness on Film Cooling Performance
,”
ASME J. Eng. Gas Turbines Power
,
107
(
1
), pp.
111
116
.
12.
Barlow
,
D. N.
, and
Kim
,
Y. W.
,
1995
, “
Effect of Surface Roughness on Local Heat Transfer and Film Cooling Effectiveness
,”
Proceedings of the ASME Turbo Expo
,
Huston, TX
,
June 5–8, 1995
, ASME Paper No. 95-GT-14.
13.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
,
1996
, “
Effects of Surface Roughness on Film Cooling
,”
Proceedings of the ASME Turbo Expo
,
Birmingham, UK
,
June 10–13, 1996
, ASME Paper No. 96-GT-299.
14.
Bogard
,
D. G.
,
Schmidt
,
D. L.
, and
Tabbita
,
M.
,
1998
, “
Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer
,”
ASME J. Turbomach.
,
120
(
2
), pp.
337
342
.
15.
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Effects of Free-Stream Turbulence and Surface Roughness on Film Cooling
,”
Proceedings of the ASME Turbo Expo
,
Birmingham, UK
,
June 10–13
, ASME Paper No. 96-GT-462.
16.
Bons
,
J. P.
,
MacArthur
,
C. D.
, and
Rivir
,
R. B.
,
1994
, “
The Effect of High Freestream Turbulence on Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
118
(
4
), pp.
814
825
.
17.
Kohli
,
A.
, and
Bogard
,
D. G.
,
1997
, “
Effects of Very High Free-Stream Turbulence on the Jet-Mainstream Interaction in a Film Cooling Flow
,”
ASME J. Turbomach.
,
120
(
4
), pp.
785
790
.
18.
Wilkins
,
P. H.
,
Lynch
,
S. P.
,
Thole
,
K. A.
,
Quach
,
S.
,
Vincent
,
T.
, and
Mongillo
,
D.
,
2022
, “
Effect of a Ceramic Matrix Composite Surface on Film Cooling
,”
ASME J. Turbomach.
,
144
(
8
), p.
081014
.
19.
Nemeth
,
N. N.
,
Mital
,
S. K.
, and
Lang
,
J.
,
2010
,
Evaluation of Solid Modeling Software for Finite Element Analysis of Woven Ceramic Matrix Composites
, NASA T/M 2010-216250.
20.
Eberly
,
M. K.
, and
Thole
,
K. A.
,
2013
, “
Time-Resolved Film-Cooling Flows at High and Low Density Ratios
,”
ASME J. Turbomach.
,
136
(
6
), p.
061003
.
21.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2017
, “
Thermal Field Measurements for a Shaped Hole at Low and High Freestream Turbulence Intensity
,”
ASME J. Turbomach.
,
139
(
2
), p.
021012
.
22.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2017
, “
Effect of In-Hole Roughness on Film Cooling From a Shaped Hole
,”
ASME J. Turbomach.
,
139
(
3
), p.
031004
.
23.
Haydt
,
S.
,
Lynch
,
S.
, and
Lewis
,
S.
,
2017
, “
The Effect of a Meter-Diffuser Offset on Shaped Film Cooling Hole Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
139
(
9
), p.
091012
.
24.
Haydt
,
S.
,
Lynch
,
S.
, and
Lewis
,
S.
,
2018
, “
The Effect of Area Ratio Change Via Increased Hole Length for Shaped Film Cooling Holes With Constant Expansion Angles
,”
ASME J. Turbomach.
,
140
(
5
), p.
051002
.
25.
Haydt
,
S.
, and
Lynch
,
S.
,
2019
, “
Cooling Effectiveness for a Shaped Film Cooling Hole at a Range of Compound Angles
,”
ASME J. Turbomach.
,
141
(
4
), p.
041005
.
26.
Haydt
,
S.
, and
Lynch
,
S.
,
2021
, “
Heat Transfer Coefficient Augmentation for a Shaped Film Cooling Hole at a Range of Compound Angles
,”
ASME J. Turbomach.
,
143
(
5
), p.
051012
.
27.
Robertson
,
D.
,
2004
, “
Roughness Impact on Turbine Vane Suction Side Film Cooling Effectiveness
,”
Thesis
,
University of Texas
.
28.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kahler
,
C. J.
,
Werely
,
S. T.
, and
Kompenhans
,
J.
,
2018
,
Particle Image Velocimetry A Practical Guide
,
Springer International Publishing AG
,
Cham, Switzerland
.
29.
LaVision
,
2020
, “
Product Manual for DaVis 10.1 Software
,” LaVision GmbH, Gottingen, Ger. Item No. 1105xxx.
30.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
J. Fluids Eng.
,
104
(
2
), pp.
2
258
.
31.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2011
,
Theory and Design for Mechanical Measurements
,
John Wiley & Sons, Inc
,
Hoboken, NJ
.
32.
Wieneke
,
B.
,
2015
, “
PIV Uncertainty Quantification From Correlation Statistics
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074002
.
33.
Koutmos
,
P.
, and
McGuirk
,
J. J.
,
1989
, “
Isothermal Flow in a Gas Turbine Combustor—A Benchmark Experimental Study
,”
Exp. Fluids
,
7
(
5
), pp.
344
354
.
You do not currently have access to this content.