Abstract

The design of internal cooling channels played an important role in turbine cooling. Distributions of thermo-fluid information, including surface distributions, cross section distributions, and projected distributions are common forms of data for internal cooling research. For over half a century since 2D thermo-fluid data were obtainable, there were very few universal tools to regress images. This study proposed a reduced ordered model to regress thermo-fluid image data by integrating the physics nature of thermo-fluid problems with neural networks. This effort started from a general partial differential equation and utilized a series of derivations to convert the equations into recurrent convolutional neural networks. The tested data included the temperature distribution on the cooled solid surface, the projected heat flux image on the fluid-solid interfaces, and the pressure distribution in the middle cross section. Results indicated an excellent regressing accuracy of the presented model for the three types of data, which was elevated as compared with a widely used conditional generative adversarial networks (cGAN) deep learning model. Most importantly, the proposed model only consumed 1/290 trainable parameters as compared to cGAN model. The key features that led to the success of the proposed reduced ordered model included: the matching between the differential nature of a convention-diffusion phenomenon and the convolution calculation process, and the compliance of the time evolution nature of thermo-fluid images with the recurrent structure of the model.

References

1.
Han
,
J. C.
, and
Park
,
J. S.
,
1988
, “
Developing Heat Transfer in Rectangular Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
31
(
1
), pp.
183
195
.
2.
Han
,
J. C.
, and
Zhang
,
Y. M.
,
1992
, “
High Performance Heat Transfer Ducts With Parallel Broken and V-Shaped Broken Ribs
,”
Int. J. Heat Mass Transfer
,
35
(
2
), pp.
513
523
.
3.
Lee
,
D. H.
,
Rhee
,
D. H.
,
Kim
,
K. M.
,
Cho
,
H. H.
, and
Moon
,
H. K.
,
2009
, “
Detailed Measurement of Heat/Mass Transfer With Continuous and Multiple V-Shaped Ribs in Rectangular Channel
,”
Energy
,
34
(
11
), pp.
1770
1778
.
4.
Ligrani
,
P. M.
,
Harrison
,
J. L.
,
Mahmmod
,
G. I.
, and
Hill
,
M. L.
,
2001
, “
Flow Structure Due to Dimple Depressions on A Channel Surface
,”
Phys. Fluids
,
13
(
11
), pp.
3442
3451
.
5.
Isaev
,
S. A.
,
Schelchkov
,
A. V.
,
Leontiev
,
A. I.
,
Gortyshov
,
Y. F.
,
Baranov
,
P. A.
, and
Popov
,
I. A.
,
2017
, “
Vortex Heat Transfer Enhancement in the Narrow Plane-Parallel Channel With the Oval-Trench Dimple of Fixed Depth and Spot Area
,”
Int. J. Heat Mass Transfer
,
109
, pp.
40
62
.
6.
Chyu
,
M. K.
,
1990
, “
Heat Transfer and Pressure Drop for Short Pin-Fin Arrays With Pin-Endwall Fillet
,”
ASME J. Heat Transfer-Trans. ASME
,
112
(
4
), pp.
926
932
.
7.
Won
,
S. Y.
,
Mahmood
,
G. I.
, and
Ligrani
,
P. M.
,
2004
, “
Spatially-Resolved Heat Transfer and Flow Structure in a Rectangular Channel With Pin Fins
,”
Int. J. Heat Mass Transfer
,
47
(
8–9
), pp.
1731
1743
.
8.
Rao
,
Y.
, and
Zhang
,
P.
,
2019
, “
Experimental Study of Heat Transfer and Pressure Loss in Channels With Miniature V Rib-Dimple Hybrid Structure
,”
Heat Transfer Eng.
,
41
(
15
), pp.
1431
1441
.
9.
Chang
,
S. W.
,
Liou
,
T. M.
, and
Lee
,
T. H.
,
2012
, “
Thermal Performance Comparison Between Radially Rotating Ribbed Parallelogram Channels With and Without Dimples
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3541
3559
.
10.
Zhou
,
W.
,
Rao
,
Y.
, and
Hu
,
H.
,
2015
, “
An Experimental Investigation on the Characteristics of Turbulent Boundary Layer Flows Over a Dimpled Surface
,”
ASME J. Fluids Eng.
,
138
(
2
), p.
021204
.
11.
Zhang
,
P.
,
Rao
,
Y.
,
Li
,
Y.
, and
Weigand
,
B.
,
2019
, “
Heat Transfer and Turbulent Flow Structure in Channels With Miniature V-Shaped Rib-Dimple Hybrid Structures on One Wall
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
7
), p.
071903
.
12.
Li
,
P.
,
Campbell
,
M.
,
Zhang
,
N.
, and
Eckels
,
S. J.
,
2019
, “
Relationship Between Turbulent Structures and Heat Transfer in Microfin Enhanced Surfaces Using Large Eddy Simulations and Particle Image Velocimetry
,”
Int. J. Heat Mass Transfer
,
136
, pp.
1282
1298
.
13.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Networks
,”
Proceedings of the 27th International Conference on Neural Information Processing Systems
,
Bangkok, Thailand
,
December
, pp.
2672
2680
.
14.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2017
, “
ImageNet Classification With Deep Convolutional Neural Networks
,”
Commun. ACM
,
60
(
6
), pp.
84
90
.
15.
Isola
,
P.
,
Zhu
,
J.
,
Zhou
,
T.
, and
Efros
,
A. A.
,
2017
, “
Image-to-Image Translation With Conditional Adversarial Networks
,” arXiv:1611.07004.
16.
Farimani
,
A. B.
,
Gomes
,
J.
, and
Pande
,
V. S.
,
2014
, “Deep Learning the Physics of Transport Phenomena,” arXiv:1709.02432.
17.
Wu
,
H.
,
Liu
,
X.
,
An
,
W.
,
Chen
,
S.
, and
Lyu
,
H.
,
2020
, “
A Deep Learning Approach for Efficiently and Accurately Evaluating the Flow Field of Supercritical Airfoils
,”
Comput. Fluids
,
198
, p.
104393
.
18.
Yang
,
L.
,
Dai
,
W.
,
Rao
,
Y.
, and
Chyu
,
M. K.
,
2019
, “
Optimization of the Hole Distribution of an Effusively Cooled Surface Facing Non-Uniform Incoming Temperature Using Deep Learning Approaches
,”
Int. J. Heat Mass Transfer
,
145
, p.
118749
.
19.
Hassoun
,
M.
,
1995
,
Fundamentals of Artificial Neural Networks
,
MIT Press
,
Cambridge, MA
, p.
48
.
20.
Murray
,
D. G.
,
McSherry
,
F.
,
Isaacs
,
R.
,
Isard
,
M.
,
Barham
,
P.
, and
Abadi
,
M.
,
2013
, “
Naiad: A Timely Dataflow System
,”
SOSP'13: ACM SIGOPS Proceedings of the Twenty Fourth ACM Symposium on Operating Systems Principles
,
Farmington, PA
,
Nov. 3–6
, pp.
439
455
.
21.
DeVries
,
T.
, and
Taylor
,
G. W.
,
2017
, “Improved Regularization of Convolutional Neural Networks With Cutout,” arXiv:1708.04552.
22.
Buslaev
,
A.
,
Parinov
,
A.
,
Khvedchenya
,
E.
,
Iglovikov
,
V. I.
, and
Kalinin
,
A. A.
,
2020
, “
Albumentations: Fast and Flexible Image Augmentations
,”
Information
,
11
(
2
), p.
125
.
23.
Han
,
S.
,
Pool
,
J.
,
Tran
,
J.
, and
Dally
,
W. J.
,
2015
, “
Learning Both Weights and Connections for Efficient Neural Networks
,”
Proceedings of the 28th International Conference on Neural Information Processing Systems, 1(NIPS'15)
,
Montreal, Canada
,
Dec. 7–12
, pp.
1135
1143
.
24.
Long
,
Z.
,
Lu
,
Y.
,
Ma
,
X.
, and
Dong
,
B.
,
2018
, “PDE-Net: Learning PDEs From Data,” arXiv:1710.09668.
25.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
26.
LeCun
,
Y.
, and
Bengio
,
Y.
,
1998
, “Convolutional Networks for Images, Speech, and Time Series,”
The Handbook of Brain Theory and Neural Networks
,
MIT Press
,
Cambridge, MA
, pp.
255
258
.
27.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2015
, “Deep Residual Learning for Image Recognition,” arXiv:1512.03385.
28.
Dupond
,
S.
,
2019
, “
A Thorough Review on the Current Advance of Neural Network Structures
,”
Ann. Rev. Control
,
14
, pp.
200
230
.
29.
Mirza
,
M.
, and
Osindero
,
S.
,
2014
, “Conditional Generative Adversarial Nets,” arXiv:1411.1784.
You do not currently have access to this content.