Abstract

With increasing aerodynamic and thermal loads, film cooling has been a popular technology integrated into the design of the modern gas turbine vane endwall, especially for the first-stage vane endwall. A staggering amount of research has been completed to quantify the effect of operating conditions and cooling hole geometrical properties. However, most of these investigations did not address the influence of the manufacturing tolerances, assembly errors, and operation degradations on the endwall misalignment. In this paper, uncertainty quantification (UQ) analysis was performed to quantify the impacts of upstream endwall misalignment uncertainties on the endwall film cooling performance and vane surface phantom cooling performance. The upstream endwall misalignment, step geometry with various step heights, commonly exists between the combustor exit and the first-stage vane endwall. Based on the non-intrusive polynomial chaos expansion (NIPC) and the uniform probability distribution assumption, the deviation (step height) uncertainties of the upstream endwall misalignment were quantified. To predict the endwall secondary flow and film cooling effectiveness in the transonic linear vane passage, the commercial computational fluid dynamic solver ANSYS FLUENT was used to numerically solve the three-dimensional steady-state Reynolds-Averaged Navier–Stokes (RANS) equations. The robustness analysis of endwall film cooling performance and phantom cooling performance to the upstream endwall misalignment was conducted for three design upstream step heights (ΔH): a baseline configuration (ΔH = 0 mm), two misaligned configurations with forward step (ΔH = −5 mm) and backward step (ΔH = 5 mm), respectively. Results show that the actual cooling performance has a high probability of deviating from the nominal value for the baseline configuration. The critical regions that are most sensitive to the upstream step misalignment are also identified by variances. The UQ results also show that the design geometry with a forward step has a more robust film cooling performance on endwall and phantom cooling performance on the vane pressure side surface, which means a smaller variance and a better expectation than the no-step configuration. In contrast, the design geometry with a backward step induces the reductions in the expectation of the film cooling effectiveness and coolant coverage and the amplification of performance fluctuations. This work provides a certain guiding direction for the optimization design for the upstream step geometry.

References

1.
Yin
,
F.
, and
Rao
,
A. G.
,
2017
, “
Performance Analysis of an Aero Engine With Inter-Stage Turbine Burner
,”
Aeronaut J.
,
121
(
1245
), pp.
1605
1626
.
2.
Jabbari
,
M. Y.
,
Marston
,
K. C.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1996
, “
Film Cooling of the Gas Turbine Endwall by Discrete-Hole Injection
,”
ASME J. Turbomach
,
118
(
2
), pp.
278
284
.
3.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1999
, “
The Design of an Improved Endwall Film-Cooling Configuration
,”
ASME J. Turbomach.
,
121
(
4
), pp.
772
780
.
4.
Satta
,
F.
, and
Tanda
,
G.
,
2015
, “
Effect of Discrete-Hole Arrangement on Film-Cooling Effectiveness for the Endwall of a Turbine Blade Cascade
,”
Appl. Therm. Eng.
,
91
, pp.
507
514
.
5.
Zhang
,
L. Z.
,
Yin
,
J.
,
Liu
,
K. V.
, and
Hee-Koo
,
M.
,
2015
, “
Effect of Hole Diameter On Nozzle Endwall Film Cooling and Associated Phantom Cooling
,” ASME Paper No. GT2015-42541.
6.
Bunker
,
R. S.
,
2009
, “
The Effects of Manufacturing Tolerances on Gas Turbine Cooling
,”
ASME J. Turbomach.
,
131
(
4
), p.
041018
.
7.
Zhang
,
L.
, and
Moon
,
H. K.
,
2003
, “
Turbine Nozzle Endwall Inlet Film Cooling: The Effect of a Back-Facing Step
,” ASME Paper No. GT2003-38319.
8.
Li
,
Z.
,
Liu
,
L.
,
Li
,
J.
,
Sibold
,
R. A.
,
Ng
,
W. F.
,
Xu
,
H.
, and
Fox
,
M.
,
2018
, “
Effects of Upstream Step Geometry on Axisymmetric Converging Vane Endwall Secondary Flow and Heat Transfer at Transonic Conditions
,”
ASME J. Turbomach.
,
140
(
12
), p.
121008
.
9.
Luehr
,
L.
,
Sibold
,
R.
,
Mao
,
S.
,
Ng
,
W. F.
,
Li
,
Z.
,
Xu
,
H.
, and
Fox
,
M.
,
2020
, “
The Effect of Step Misalignment on Purge Flow Cooling of Nozzle Guide Vane at Transonic Conditions
,”
ASME J. Turbomach.
,
142
(
10
), p.
101004
.
10.
Mao
,
S.
,
Sibold
,
R.
,
Ng
,
W. F.
,
Li
,
Z.
,
Bai
,
B.
,
Xu
,
H.
, and
Fox
,
M.
,
2021
, “
Experimental Study of the Endwall Heat Transfer of a Transonic Nozzle Guide Vane With Upstream Jet Purge Cooling Part 2—Effect of Combustor-Nozzle Guide Vane Misalignment
,”
ASME J. Turbomach.
,
144
(
5
), p.
051004
.
11.
Walters
,
R. W.
, and
Huyse
,
L.
,
2002
, “
Uncertainty Analysis for Fluid Mechanics with Applications
,” NASA/CR Report No. 2002-211449.
12.
Huang
,
M.
,
Li
,
Z.
,
Li
,
J.
, and
Song
,
L.
,
2021
, “
Investigations on the Aerothermal Performance Uncertainty Quantification of the Turbine Blade Squealer Tip
,” ASME Paper No. GT2021-59033.
13.
Sakai
,
E.
,
Bai
,
M.
,
Ahlfeld
,
R.
, and
Montomoli
,
F.
,
2018
, “
Uncertainty Quantification Analysis of Back Facing Steps Film Cooling Configurations
,” ASME Paper No. GT2018-75686.
14.
Tao
,
Z.
,
Guo
,
Z.
,
Song
,
L.
, and
Li
,
J.
,
2021
, “
Uncertainty Quantification of Aero-thermal Performance of a Blade Endwall Considering Slot Geometry Deviation and Mainstream Fluctuation
,”
ASME J. Turbomach.
,
143
(
11
), p.
111013
.
15.
Gouttière
,
A.
,
Wunsch
,
D.
,
Nigro
,
R.
,
Barbieux
,
V.
, and
Hirsch
,
C.
,
2021
, “
Robust Design Optimization of an Industrial 1.5 Stage Axial Compressor Under Operational and Geometrical Uncertainties
,” ASME Paper No. GT2021-58603.
16.
Bai
,
B.
,
Li
,
Z.
,
Li
,
J.
,
Mao
,
S.
, and
Ng
,
W. F.
,
2021
, “
The Effects of Axisymmetric Convergent Contouring and Blowing Ratio on Endwall Film Cooling and Vane Pressure Side Surface Phantom Cooling Performance
,”
ASME J. Eng. Gas Turbines Power
,
144
(
2
), p.
021020
.
17.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.
18.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
19.
Soize
,
C.
, and
Ghanem
,
R.
,
2004
, “
Physical Systems With Random Uncertainties: Chaos Representations With Arbitrary Probability Measure
,”
SIAM J. Sci. Comput.
,
26
(
2
), pp.
395
410
.
20.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
964
979
.
21.
Karimi
,
M. S.
,
Raisee
,
M.
,
Farhat
,
M.
,
Hendrick
,
P.
, and
Nourbakhsh
,
A.
,
2021
, “
On the Numerical Simulation of a Confined Cavitating Tip Leakage Vortex Under Geometrical and Operational Uncertainties
,”
Comput. Fluids
,
220
, p.
104881
.
22.
Montomoli
,
F.
,
Massini
,
M.
, and
Salvadori
,
S.
,
2011
, “
Geometrical Uncertainty in Turbomachinery: Tip Gap and Fillet Radius
,”
Comput. Fluids
,
46
(
1
), pp.
362
368
.
23.
Montomoli
,
F.
,
Massini
,
M.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2011
, “
Geometrical Uncertainty and Film Cooling: Fillet Radii
,”
ASME J. Turbomach.
,
134
(
1
), p.
011019
.
24.
Högner
,
L.
,
Voigt
,
M.
,
Mailach
,
R.
,
Meyer
,
M.
, and
Gerstberger
,
U.
,
2020
, “
Probabilistic Finite Element Analysis of Cooled High-Pressure Turbine Blades—Part B: Probabilistic Analysis
,”
ASME J. Turbomach.
,
142
(
10
), p.
101009
.
25.
Högner
,
L.
,
Voigt
,
M.
,
Mailach
,
R.
,
Meyer
,
M.
, and
Gerstberger
,
U.
,
2020
, “
Probabilistic Finite Element Analysis of Cooled High-Pressure Turbine Blades—Part A: Holistic Description of Manufacturing Variability
,”
ASME J. Turbomach.
,
142
(
10
), p.
101008
.
26.
Schneider
,
M.
,
Schiffer
,
H.
, and
Lehmann
,
K.
,
2020
, “
Uncertainty Propagation Analyses of Lean Burn Combustor Exit Conditions for a Robust Nozzle Cooling Design
,”
ASME J. Turbomach.
,
142
(
5
), p.
051003
.
You do not currently have access to this content.