Abstract

As gas turbine engine manufacturers strive to implement condition-based operation and maintenance, there is a need for blade monitoring strategies capable of early fault detection and root-cause determination. Given the importance of blade cooling flows to turbine blade health and longevity, there is a distinct lack of methodologies for coolant flowrate monitoring. The present study addresses this identified opportunity by applying an infrared thermography system on an engine-representative research turbine to generate data-driven models for prediction of blade coolant flowrate. Thermal images were used as inputs to a linear regression and regularization algorithm to relate blade surface temperature distribution with blade coolant flowrate. Additionally, this study investigates how coolant flowrate prediction accuracy is influenced by the number and breadth of diagnostic measurements. The results of this study indicate that a source of high-fidelity training data can be used to predict blade coolant flowrate within about six percent error. Furthermore, identification of prioritized sensor placement supports application of this technique across multiple sensor technologies capable of measuring blade surface temperature in operating gas turbine engines, including spatially resolved and point-based measurement techniques.

References

1.
Meher-Homji
,
C. B.
, and
Gabriles
,
G.
,
1998
, “
Gas Turbine Blade Failures—Causes, Avoidance, and Troubleshooting
,”
Proceedings of the 27th Turbomachinery Symposium
,
College Station, TX
,
Sept. 20–24
, pp.
129
180
.
2.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propuls. Power
,
22
(
2
), pp.
249
270
.
3.
Han
,
J. C.
, and
Wright
,
L. M.
,
2006
,
Gas Turbine Handbook
,
Department of Energy National Energy Technology Laboratory
,
Morgantown, WV
, p.
103
.
4.
Bunker
,
R. S.
,
Dees
,
J. E.
, and
Palafox
,
P.
,
2014
,
Impingement Cooling in Gas Turbines: Design, Applications, and Limitations
,
WIT Press
,
Southampton, UK
.
5.
Koff
,
B. L.
,
2004
, “
Gas Turbine Technology Evolution: A Designer’s Perspective
,”
J. Propuls. Power
,
20
(
4
), pp.
577
595
.
6.
Winig
,
L.
,
2016
, “
GE's Big Bet on Data and Analytics
,” MIT Sloan.
7.
Siemens
,
2009
,
Operations and Maintenance Operating Cost Assessment Report
.
8.
Mathioudakis
,
K.
,
Papathanasiou
,
A.
,
Loukis
,
E.
, and
Papailiou
,
K.
,
1991
, “
Fast Response Wall Pressure Measurement as a Means of Gas Turbine Blade Fault Identification
,”
ASME J. Eng. Gas Turbines Power
,
113
(
2
), pp.
269
275
.
9.
Cox
,
J. R.
,
Arnold
,
S. A.
, and
Anusonti-Inthra
,
P.
,
2015
, “
Using Gas Turbine Engine Casing Accelerometer Measurements for Rotor Blade Health Monitoring
,”
Proceedings of the 51st AIAA/SAE/ASEE Joint Propulsion Conference.
,
Orlando, FL
,
July 27
,
p. 4194
.
10.
Goel
,
N.
,
Kumar
,
A.
,
Narasimhan
,
V.
,
Nayak
,
A.
, and
Srivastava
,
A.
,
2008
, “
Health Risk Assessment and Prognosis of Gas Turbine Blades by Simulation and Statistical Methods
,”
Proceedings of the Canadian Conference on Electrical and Computer Engineering
,
Niagara Falls, ON, Canada
,
May 4–7
, IEEE, pp.
1087
1091
.
11.
Hee
,
L. M.
, and
Leong
,
M. S.
, “Improved Blade Fault Diagnosis Using Discrete Blade Passing Energy Packet and Rotor Dynamics Wavelet Analysis,” GT2010-22218.
12.
Rajagopalan
,
V.
,
Behera
,
A.
,
Bhattacharya
,
A.
,
Prabhu
,
R.
, and
Badami
,
V.
,
2012
, “
Estimation of Static Deflection Under Operational Conditions for Blade Health Monitoring
,”
Proceedings of the Prognostics and System Health Management Conference
,
Beijing, China
,
May 23–35
, pp.
1
6
.
13.
Woike
,
M.
,
Abdul-Aziz
,
A.
, and
Clem
,
M.
,
2014
, “
Structural Health Monitoring on Turbine Engines Using Microwave Blade Tip Clearance Sensors
,”
Proceedings of SPIE Smart Sensor Phenomena, Technology, Networks, and Systems Integration
,
San Diego, CA
,
Apr. 22
.
14.
Zhang
,
Z.
,
Yang
,
G.
, and
Hu
,
K.
,
2018
, “
Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission
,”
Sensors
,
18
(
5
), p.
1321
.
15.
Kestner
,
B.
,
Lieuwen
,
T.
,
Hill
,
C.
,
Angello
,
L.
,
Barron
,
J.
, and
Perullo
,
C. A.
,
2015
, “
Correlation Analysis of Multiple Sensors for Industrial Gas Turbine Compressor Blade Health Monitoring
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
112605
.
16.
Yu
,
L.
, and
Shrivastava
,
S.
,
2016
, “
Distributed Real Time Compressor Blade Health Monitoring System
,”
Proceedings of Annual Conference Prognosis Health Management Society
,
Denver, CO
,
Oct. 3
, pp.
1
8
.
17.
Sridhar
,
V.
, and
Chana
,
K. S.
, “Development of a Combined Eddy Current and Pressure Sensor for Gas Turbine Blade Health Monitoring,” GT2017-63807.
18.
Wu
,
S.
,
Russhard
,
P.
,
Yan
,
R.
,
Tian
,
S.
,
Wang
,
S.
,
Zhao
,
Z.
, and
Chen
,
X.
,
2020
, “
An Adaptive Online Blade Health Monitoring Method: From Raw Data to Parameters Identification
,”
IEEE Trans. Instrum. Meas.
,
69
(
5
), pp.
2581
2592
.
19.
Chen
,
Z.
,
Sheng
,
H.
,
Xia
,
Y.
,
Wang
,
W.
, and
He
,
J.
,
2021
, “
A Comprehensive Review on Blade Tip Timing-Based Health Monitoring: Status and Future
,”
Mech. Syst. Signal Process
,
149
, p.
107330
.
20.
Woike
,
M. R.
,
Abdul-Aziz
,
A.
, and
Bencic
,
T. J.
,
2010
, “
A Microwave Blade Tip Clearance Sensor for Propulsion Health Monitoring
,”
Proceedings of the AIAA Infotech Aerospace Conference.
21.
Gubran
,
A. A.
, and
Sinha
,
J. K.
,
2014
, “
Shaft Instantaneous Angular Speed for Blade Vibration in Rotating Machine
,”
Mech. Syst. Signal Process.
,
44
(
1–2
), pp.
47
59
.
22.
Urban
,
L.
,
1969
,
Gas Turbine Engine Parameter Interrelationships
,
HSD UTC
,
Windsor Locks, CT
.
23.
LeMieux
,
D. H.
,
2005
, On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization, https://www.osti.gov/biblio/883320-line-thermal-barrier-coating-monitoring-real-time-failure-protection-life-maximization
24.
Markham
,
J.
,
Cosgrove
,
J.
,
Scire
,
J.
,
Haldeman
,
C.
, and
Agoos
,
I.
,
2014
, “
Aircraft Engine-Mounted Camera System for Long Wavelength Infrared Imaging of In-Service Thermal Barrier Coated Turbine Blades
,”
Rev. Sci. Instrum.
85
(
12
), p.
124902
.
25.
Holanda
,
R.
,
1979
, Evaluation of Miniature Single-Wire Sheathed Thermocouples for Turbine Blade Temperature Measurement,” NASA TM-79173.
26.
Martin
,
L. C.
, and
Holanda
,
R.
,
1994
, “
Applications of Thin-Film Thermocouples for Surface Temperature Measurement
,”
Proceedings of the Conference on Spin-Off Technologies From NASA for Commercial Sensors and Scientific Applications
,
San Diego, CA
,
Oct. 4
, pp.
65
76
.
27.
Schultz
,
D. L.
, and
Jones
,
T. V.
,
1973
, “Heat-Transfer Measurements in Short-Duration Hypersonic Facilities,” AGARD, https://apps.dtic.mil/sti/citations/AD0758590
28.
Epstein
,
A. H.
,
Guenette
,
G. R.
,
Norton
,
R. J. G.
, and
Yuzhang
,
C.
,
1986
, “
High-Frequency Response Heat-Flux Gauge
,”
Rev. Sci. Instrum.
,
57
(
4
), pp.
639
649
.
29.
Dunn
,
M. G.
, and
Haldeman
,
C. W.
,
2000
, “
Time-Averaged Heat Flux for a Recessed Tip, Lip, and Platform of a Transonic Turbine Blade
,”
ASME J. Turbomach.
,
122
(
4
), pp.
692
698
.
30.
Siroka
,
S.
,
Foley
,
B. M.
,
Berdanier
,
R. A.
, and
Thole
,
K. A.
,
2021
, “
Application of 3-Omega Method for Thin-Film Heat Flux Gauge Calibration
,”
Meas. Sci. Technol.
,
32
(
11
), p.
114001
.
31.
Murugan
,
M.
,
Walock
,
M.
,
Ghoshal
,
A.
,
Knapp
,
R.
, and
Caesley
,
R.
,
2021
, “
Embedded Temperature Sensor Evaluations for Turbomachinery Component Health Monitoring
,”
Energies
,
14
(
4
), p.
852
.
32.
Nau
,
P.
,
Yin
,
Z.
,
Lammel
,
O.
, and
Meier
,
W.
,
2019
, “
Wall Temperature Measurements in Gas Turbine Combustors With Thermographic Phosphors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
041021
.
33.
Feist
,
J. P.
,
Sollazzo
,
P. Y.
,
Berthier
,
S.
,
Charnley
,
B.
, and
Wells
,
J.
,
2013
, “
Application of an Industrial Sensor Coating System on a Rolls-Royce Jet Engine for Temperature Detection
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
012101
.
34.
Chen
,
X.
,
Mutasim
,
Z.
,
Price
,
J.
,
Feist
,
J. P.
,
Heyes
,
A. L.
, and
Seefeldt
,
S.
,
2005
, “
Industrial Sensor TBCs: Studies on Temperature Detection and Durability
,”
Int. J. Appl. Ceram. Technol
,
2
(
5
), pp.
414
421
.
35.
Atkinson
,
W. H.
, and
Strange
,
R. R.
“Turbine Pyrometry for Advanced Engines,” AIAA-87-2011.
36.
Eggert
,
T.
,
Schenk
,
B.
, and
Pucher
,
H.
,
2002
, “
Development and Evaluation of a High-Resolution Turbine Pyrometer System
,”
ASME J. Turbomach.
,
124
(
3
), pp.
439
444
.
37.
Becker
,
W. J.
,
Roby
,
R. J.
,
O’Brien
,
W. F.
, and
Bensing
,
G. K.
,
1994
, “
Dynamic Turbine Blade Temperature Measurements
,”
J. Propuls. Power
,
10
(
1
), pp.
69
78
.
38.
Taniguchi
,
T.
,
Sanbonsugi
,
K.
,
Ozaki
,
Y.
, and
Norimoto
,
A.
, “Temperature Measurement of High Speed Rotating Turbine Blades Using a Pyrometer,” Paper No. GT2006-90247.
39.
Brunner
,
M. H.
,
Rose
,
M. G.
,
Mühlbauer
,
K.
, and
Abhari
,
R. S.
,
2007
, “
In-Engine Turbine Heat Transfer Measurement
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
221
, pp.
727
734
.
40.
Lazzi Gazzini
,
S.
,
Schädler
,
R.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2017
, “
Infrared Thermography With Non-uniform Heat Flux Boundary Conditions on the Rotor Endwall of an Axial Turbine
,”
Meas. Sci. Technol.
,
28
(
2
), p.
025901
.
41.
Christensen
,
L.
,
Celestina
,
R.
,
Sperling
,
S.
,
Mathison
,
R.
,
Aksoy
,
H.
, and
Liu
,
J.
,
2021
, “
Infrared Temperature Measurements of the Blade Tip for a Turbine Operating at Corrected Engine Conditions
,”
ASME J. Turbomach.
,
143
(
10
), p.
101005
.
42.
Knisely
,
B. F.
,
Berdanier
,
R. A.
,
Thole
,
K. A.
,
Haldeman
,
C. W.
,
Markham
,
J. R.
,
Cosgrove
,
J. E.
,
Carlson
,
A. E.
, and
Scire
,
J. J.
,
2021
, “
Acquisition and Processing Considerations for Infrared Images of Rotating Turbine Blades
,”
ASME J. Turbomach.
,
143
(
4
), p.
041013
.
43.
Barringer
,
M. D.
,
Coward
,
A.
,
Clark
,
K. P.
,
Thole
,
K. A.
,
Schmitz
,
J.
,
Wagner
,
J.
,
Alvin
,
M. A.
,
Burke
,
P.
, and
Dennis
,
R.
, “The Design of a Steady Aero Thermal Research Turbine (START) for Studying Secondary Flow Leakages and Airfoil Heat Transfer,” Paper No. GT2014-25570.
44.
Berdanier
,
R. A.
,
Monge-Concepción
,
I.
,
Knisely
,
B. F.
,
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Grover
,
E. A.
,
2019
, “
Scaling Sealing Effectiveness in a Stator-Rotor Cavity for Differing Blade Spans
,”
ASME J. Turbomach.
,
141
(
5
), p.
051007
.
45.
Mori
,
M.
,
Novak
,
L.
, and
Sekavčnik
,
M.
,
2007
, “
Measurements on Rotating Blades Using IR Thermography
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
387
396
.
46.
Tibshirani
,
R.
,
1996
, “
Regression Shrinkage and Selection Via the Lasso
,”
J. R. Stat. Soc. Ser. B
,
58
(
1
), pp.
267
288
.
47.
Cuccu
,
G.
,
Danafar
,
S.
,
Cudre-Mauroux
,
P.
,
Gassner
,
M.
,
Bernero
,
S.
, and
Kryszczuk
,
K.
,
2017
, “
A Data-Driven Approach to Predict NOx-Emissions of Gas Turbines
,”
Proceedings of the IEEE International Conference on Big Data
,
Boston, MA
,
Dec. 11
, pp.
1283
1288
.
48.
Goyal
,
V.
,
Xu
,
M.
, and
Kapat
,
J.
Use of Vector Autoregressive Model for Anomaly Detection in Utility Gas Turbines,” Paper No. GT2019-90995.
49.
Olsson
,
T.
,
Ramentol
,
E.
,
Rahman
,
M.
,
Oostveen
,
M.
, and
Kyprianidis
,
K.
,
2021
, “
A Data-Driven Approach for Predicting Long-Term Degradation of a Fleet of Micro Gas Turbines
,”
Energy AI
,
4
, p.
100064
.
50.
Coad
,
A.
, and
Srhoj
,
S.
,
2020
, “
Catching Gazelles With a Lasso: Big Data Techniques for the Prediction of High-Growth Firms
,”
Small Bus. Econ.
,
55
(
3
), pp.
541
565
.
You do not currently have access to this content.