Abstract

The gas turbine endwall is bearing extreme thermal loads with the rapid increase of turbine inlet temperature. Therefore, the effective cooling of turbine endwalls is of vital importance for the safe operation of turbines. In the design of endwall cooling layouts, numerical simulations based on conjugate heat transfer (CHT) are drawing more attention as the component temperature can be predicted directly. However, the computation cost of high-fidelity (HF) CHT analysis can be high and even prohibitive especially when there are many cases to evaluate such as in the design optimization of cooling layout. In this study, we established a multi-fidelity (MF) framework in which the data of low-fidelity (LF) CHT analysis were incorporated to help the building of a model that predicts the result of HF simulation. Based upon this framework, MF design optimization of a validated numerical turbine endwall model was carried out. The high- and LF data were obtained from the computation of fine mesh and coarse mesh, respectively. In the optimization, the positions of the film cooling holes were parameterized and controlled by a shape function. With the help of MF modeling and sequentially evaluated designs, the cooling performance of the model endwall was improved efficiently.

References

1.
Wang
,
H.-P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R.
,
1995
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition
,
Houston, TX
,
June 5–8
.
2.
Papa
,
M.
,
2006
, “
Influence of Blade Leading Edge Geometry and Upstream Blowing on the Heat/Mass Transfer in a Turbine Cascade
,”
Ph.D. thesis
,
University of Minnesota
,
Minneapolis, MN
.
3.
Friedrichs
,
S.
,
1997
, “
Endwall Film-Cooling in Axial Flow Turbines
,”
Ph.D. thesis
,
University of Cambridge
,
Cambridge
.
4.
Martin
,
T. J.
,
2001
,
Computer-Automated Multi-Disciplinary Analysis and Design Optimization of Internally Cooled Turbine Blades,”
Ph.D. thesis, Pennsylvania State University
,
University Park, PA
.
5.
Talya
,
S. S.
,
Chattopadhyay
,
A.
, and
Rajadas
,
J. N.
,
2002
, “
Multidisciplinary Design Optimization Procedure for Improved Design of a Cooled Gas Turbine Blade
,”
Eng. Optim.
,
34
(
2
), pp.
175
194
.
6.
Verstraete
,
T.
,
Coletti
,
F.
,
Bulle
,
J.
,
Vanderwielen
,
T.
, and
Arts
,
T.
,
2013
, “
Optimization of a U-Bend for Minimal Pressure Loss in Internal Cooling Channels—Part I: Numerical Method
,”
ASME J. Turbomach.
,
135
(
5
), p.
051015
.
7.
Lee
,
K.-D.
, and
Kim
,
K.-Y.
,
2010
, “
Shape Optimization of a Fan-Shaped Hole to Enhance Film-Cooling Effectiveness
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
2996
3005
.
8.
Amaral
,
S.
,
Verstraete
,
T.
,
Van den Braembussche
,
R.
, and
Arts
,
T.
,
2010
, “
Design and Optimization of the Internal Cooling Channels of a High Pressure Turbine Blade—Part I: Methodology
,”
ASME J. Turbomach.
,
132
(
2
), p.
021013
.
9.
Verstraete
,
T.
,
Amaral
,
S.
,
Van den Braembussche
,
R.
, and
Arts
,
T.
,
2010
, “
Design and Optimization of the Internal Cooling Channels of a High Pressure Turbine Blade—Part II: Optimization
,”
ASME J. Turbomach.
,
132
(
2
), p.
021014
.
10.
Nowak
,
G.
, and
Wróblewski
,
W.
,
2011
, “
Optimization of Blade Cooling System With Use of Conjugate Heat Transfer Approach
,”
Int. J. Therm. Sci.
,
50
(
9
), pp.
1770
1781
.
11.
Hylton
,
L. D.
,
Mihelc
,
M. S.
,
Turner
,
E. R.
,
Nealy
,
D. A.
, and
York
,
R. E.
,
1983
, “
Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes
,” 28376, NASA.
12.
Chi
,
Z.
,
Liu
,
H.
, and
Zang
,
S.
,
2018
, “
Multi-Objective Optimization of the Impingement-Film Cooling Structure of a Gas Turbine Endwall Using Conjugate Heat Transfer Simulations
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
2
), p.
021004
.
13.
Timko
,
L. P.
,
1984
, “
Energy Efficient Engine High Pressure Turbine Component Test Performance Report
,” 28553, NASA.
14.
Kim
,
Y.
,
Lee
,
S.
, and
Yee
,
K.
,
2018
, “
Variable-Fidelity Optimization of Film-Cooling Hole Arrangements Considering Conjugate Heat Transfer
,”
J. Propul. Power
,
34
(
5
), pp.
1140
1151
.
15.
Zhang
,
H.
,
Li
,
Y.
,
Chen
,
Z.
,
Su
,
X.
, and
Yuan
,
X.
,
2019
, “
Multi-Fidelity Model Based Optimization of Shaped Film Cooling Hole and Experimental Validation
,”
Int. J. Heat Mass Transfer
,
132
, pp.
118
129
.
16.
Mensch
,
A.
, and
Thole
,
K. A.
,
2014
, “
Overall Effectiveness of a Blade Endwall With Jet Impingement and Film Cooling
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
031901
.
17.
Suzen
,
Y. B.
, and
Huang
,
P. G.
,
2005
, “
Numerical Simulation of Unsteady Wake/Blade Interactions in Low-Pressure Turbine Flows Using an Intermittency Transport Equation
,”
ASME J. Turbomach.
,
127
(
3
), pp.
431
444
.
18.
Henze
,
M.
,
Bogdanic
,
L.
,
Muehlbauer
,
K.
, and
Schnieder
,
M.
,
2013
, “
Effect of the Biot Number on Metal Temperature of Thermal-Barrier-Coated Turbine Parts—Real Engine Measurements
,”
ASME J. Turbomach.
,
135
(
3
), p.
031029
.
19.
Crawford
,
M. E.
,
2009
,
TEXSTAN (Academic Version)
,
University of Texas
,
Austin, TX
.
20.
Lynch
,
S. P.
,
Thole
,
K. A.
,
Kohli
,
A.
, and
Lehane
,
C.
,
2011
, “
Computational Predictions of Heat Transfer and Film-Cooling for a Turbine Blade With Nonaxisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
133
(
4
), p.
041003
.
21.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2002
, “
NIST Reference Fluid Thermodynamic and Transport Properties–REFPROP
,” NIST Stand. Ref. Database.
22.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New Kɛ Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
23.
Rodi
,
W.
,
1991
, “
Experience With Two-Layer Models Combining the K-Epsilon Model With a One-Equation Model Near the Wall
,”
29th Aerospace Sciences Meeting
,
Reno, NV
,
Jan. 7–10
, American Institute of Aeronautics and Astronautics.
24.
Li
,
K. Y.
,
Fleischmann
,
C. M.
, and
Spearpoint
,
M. J.
,
2013
, “
Determining Thermal Physical Properties of Pyrolyzing New Zealand Medium Density Fibreboard (MDF)
,”
Chem. Eng. Sci.
,
95
, pp.
211
220
.
25.
Lee
,
S.
,
Yee
,
K.
, and
Rhee
,
D.-H.
,
2016
, “
Optimization of the Array of Film-Cooling Holes on a High-Pressure Turbine Nozzle
,”
J. Propul. Power
,
33
(
1
), pp.
234
247
.
26.
Lee
,
S.
,
Yee
,
K.
, and
Rhee
,
D.-H.
,
2017
, “
Optimum Arrangement of Film Cooling Holes Considering the Manufacturing Tolerance
,”
J. Propul. Power
,
33
(
4
), pp.
793
803
.
27.
Jiang
,
Y.
,
Lin
,
H.
,
Yue
,
G.
,
Zheng
,
Q.
, and
Xu
,
X.
,
2017
, “
Aero-Thermal Optimization on Multi-Rows Film Cooling of a Realistic Marine High Pressure Turbine Vane
,”
Appl. Therm. Eng.
,
111
, pp.
537
549
.
28.
Jiang
,
Y.
,
Wan
,
X.
,
Magagnato
,
F.
,
Yue
,
G.
, and
Zheng
,
Q.
,
2018
, “
Multi-Step Optimizations of Leading Edge and Downstream Film Cooling Configurations on a High Pressure Turbine Vane
,”
Appl. Therm. Eng.
,
134
, pp.
203
213
.
29.
Wang
,
X.
,
Xu
,
H.
,
Wang
,
J.
,
Song
,
W.
, and
Wang
,
M.
,
2019
, “
Multi-Objective Optimization of Discrete Film Hole Arrangement on a High Pressure Turbine End-Wall With Conjugate Heat Transfer Simulations
,”
Int. J. Heat Fluid Flow
,
78
, p.
108428
.
30.
Thrift
,
A. A.
,
2011
,
Cooling of a Turbine Vane Endwall Through Contouring and Flow Injection,”
Pennsylvania State University
,
University Park, PA
.
31.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
,
2000
, “
Predicting the Output From a Complex Computer Code When Fast Approximations Are Available
,”
Biometrika
,
87
(
1
), pp.
1
13
.
32.
Forrester
,
A. I.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2007
, “
Multi-Fidelity Optimization Via Surrogate Modelling
,”
Proc. R. Soc. A
,
463
(
2088
), pp.
3251
3269
.
33.
Fang
,
K.-T.
,
Lin
,
D. K.
,
Winker
,
P.
, and
Zhang
,
Y.
,
2000
, “
Uniform Design: Theory and Application
,”
Technometrics
,
42
(
3
), pp.
237
248
.
34.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
35.
Chen
,
A. F.
,
Shiau
,
C.-C.
, and
Han
,
J.-C.
,
2017
, “
Turbine Blade Platform Film Cooling With Simulated Swirl Purge Flow and Slashface Leakage Conditions
,”
ASME J. Turbomach.
,
139
(
3
), p.
031012
.
36.
Chen
,
A. F.
,
Shiau
,
C.-C
, and
Han
,
J.-C.
,
2018
, “
Turbine Blade Platform Film Cooling With Fan-Shaped Holes Under Simulated Swirl Purge Flow and Slashface Leakage Conditions
,”
ASME J. Turbomach.
,
140
(
1
), p.
011006
.
You do not currently have access to this content.