Abstract

This article compares experimental and numerical data for a low-speed high-lift low pressure turbine (LPT) cascade under unsteady flow conditions. Three Reynolds numbers representative of LPTs have been tested, namely, 5 × 104, 105, and 2 × 105; at two reduced frequencies, fr = 0.5 and 1, also representative of LPTs. The experimental data were obtained at the low-speed linear cascade wind tunnel at the Polytechnic University of Madrid using hot wire, Laser Doppler Velocimetry (LDV), and pressure tappings. The numerical solver employs a sixth-order compact scheme based on the flux reconstruction method for spatial discretization and a fourth-order Runge–Kutta method to march in time. The longest case ran 550 h on 40 GPUs to reach a statistically periodic state. Pressure coefficients around the profile, boundary layer profiles and exit cross section distributions of velocity, pressure loss defect, shear Reynolds stress, and angle are compared against high-quality experimental data. Cascade loss and exit angle have also been compared against the experimental data. Very good agreement between experimental and numerical data is seen. The results demonstrate the suitability of the present methodology to predict the aerodynamic properties of unsteady flows around LPT linear cascades accurately.

References

1.
Ameri
,
A.
,
2018
, “
Implicit-les Simulation of Variable-Speed Power Turbine Cascade for Low Free-Stream Turbulence Conditions
,”
ASME Turbo Expo: Power for Land, Sea and Air Volume 2B: Turbomachinery
,
Oslo, Norway
,
June 11–15
, American Society of Mechanical Engineers, p. V02BT41A032.
2.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
,
2010
, “
Transition Mechanisms in Separation Bubbles Under Low-and Elevated-Freestream Turbulence
,”
ASME J. Turbomach.
,
132
(
1
), p.
011004
. 10.1115/1.2812949
3.
Lou
,
W.
, and
Hourmouziadis
,
J.
,
2000
, “
Separation Bubbles Under Steady and Periodic-Unsteady Main Flow Conditions
,”
ASME J. Turbomach.
,
122
(
4
), pp.
634
643
. 10.1115/1.1308568
4.
Medic
,
G.
, and
Sharma
,
O.
,
2012
, “
Large-Eddy Simulation of Flow in a Low-Pressure Turbine Cascade
,”
ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
,
Copenhagen, Denmark
,
June 11–15
, American Society of Mechanical Engineers, pp.
1239
1248
.
5.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
Bladerow Interactions, Transition, and High-Lift Aerofoils in Low-Pressure Turbines
,”
Annu. Rev. Fluid Mech.
,
37
, pp.
71
98
. 10.1146/annurev.fluid.37.061903.175511
6.
Opoka
,
M. M.
,
Thomas
,
R. L.
, and
Hodson
,
H. P.
,
2008
, “
Boundary Layer Transition on the High Lift T106a Low-Pressure Turbine Blade With an Oscillating Downstream Pressure Field
,”
ASME J. Turbomach.
,
130
(
2
), p.
021009
. 10.1115/1.2751142
7.
Coull
,
J. D.
, and
Hodson
,
H. P.
,
2011
, “
Unsteady Boundary-Layer Transition in Low-Pressure Turbines
,”
J. Fluid. Mech.
,
681
, pp.
370
410
. 10.1017/jfm.2011.204
8.
Volino
,
R. J.
,
2012
, “
Effect of Unsteady Wakes on Boundary Layer Separation on a Very High Lift Low Pressure Turbine Airfoil
,”
ASME J. Turbomach.
,
134
(
1
), p.
011011
. 10.1115/1.4003232
9.
Montomoli
,
F.
,
Hodson
,
H.
, and
Haselbach
,
F.
,
2010
, “
Effect of Roughness and Unsteadiness on the Performance of a New Low Pressure Turbine Blade at Low Reynolds Numbers
,”
ASME J. Turbomach.
,
132
(
3
), p.
031018
. 10.1115/1.3148475
10.
Schulte
,
V.
, and
Hodson
,
H. P.
,
1998
, “
Unsteady Wake-Induced Boundary Layer Transition in High Lift Lp Turbines
,”
ASME J. Turbomach.
,
120
(
1
), pp.
28
35
. 10.1115/1.2841384
11.
Jacobs
,
R.
, and
Durbin
,
P.
,
2001
, “
Simulations of Bypass Transition
,”
J. Fluid. Mech.
,
428
, pp.
185
212
. 10.1017/S0022112000002469
12.
Roberts
,
S. K.
, and
Yaras
,
M. I.
,
2006
, “
Large-Eddy Simulation of Transition in a Separation Bubble
,”
J. Fluid. Eng.
,
128
(
2
), pp.
232
238
. 10.1115/1.2170123
13.
Michelassi
,
V.
,
Chen
,
L.-W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part II: Effect of Inflow Disturbances
,”
ASME J. Turbomach.
,
137
(
7
), p.
071005
. 10.1115/1.4029126
14.
Zhang
,
X. F.
, and
Hodson
,
H.
,
2010
, “
Effects of Reynolds Number and Freestream Turbulence Intensity on the Unsteady Boundary Layer Development on An Ultra-High-Lift Low Pressure Turbine Airfoil
,”
ASME J. Turbomach.
,
132
(
1
), p.
011016
. 10.1115/1.3106031
15.
Michelassi
,
V.
,
Chen
,
L.
,
Pichler
,
R.
,
Sandberg
,
R.
, and
Bhaskaran
,
R.
,
2016
, “
High-Fidelity Simulations of Low-Pressure Turbines: Effect of Flow Coefficient and Reduced Frequency on Losses
,”
ASME J. Turbomach.
,
138
(
6
), p.
111006
. 10.1115/1.4033266
16.
Pichler
,
R.
,
Michelassi
,
V.
,
Sandberg
,
R.
, and
Ong
,
J.
,
2018
, “
Highly Resolved Large Eddy Simulation Study of Gap Size Effect on Low-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
140
(
2
), p.
021003
. 10.1115/1.4038178
17.
Huynh
,
H. T.
,
2007
, “
A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods
,”
18th AIAA Computational Fluid Dynamics Conference
,
Miami, FL
,
June 25–28
, p.
4079
.
18.
Gisbert
,
F.
,
Bolinches-Gisbert
,
M.
,
Pueblas
,
J.
, and
Corral
,
R.
,
2018
, “
Efficient Implementation of Flux Reconstruction Schemes for the Simulation of Compressible Viscous Flows on Graphics Processing Unigs
,”
Tenth International Conference on Computational Fluid Dynamics (ICCFD10)
, Paper No. ICCFD10-307.
19.
Corral
,
R.
,
Gisbert
,
F.
, and
Pueblas
,
J.
,
2017
, “
Execution of a Parallel Edge-Based Navier-Stokes Solver on Commodity Graphics Processor Units
,”
Int. J. Computat. Fluid Dyn.
,
31
(
2
), pp.
93
108
. 10.1080/10618562.2017.1294686
20.
Moura
,
R.
,
Sherwin
,
S.
, and
Peiró
,
J.
,
2015
, “
Linear Dispersion-Ddiffusion Analysis and Its Application to Under-Resolved Turbulence Simulations Using Discontinuous Galerkin Spectral/hp Methods
,”
J. Comput. Phys.
,
298
, pp.
695
710
. 10.1016/j.jcp.2015.06.020
21.
Mengaldo
,
G.
,
De Grazia
,
D.
,
Moura
,
R. C.
, and
Sherwin
,
S. J.
,
2018
, “
Spatial Eigensolution Analysis of Energy-Stable Flux Reconstruction Schemes and Influence of the Numerical Flux on Accuracy and Robustness
,”
J. Comput. Phys.
,
358
, pp.
1
20
. 10.1016/j.jcp.2017.12.019
22.
Bolinches-Gisbert
,
M.
,
Robles
,
D. C.
,
Corral
,
R.
, and
Gisbert
,
F.
,
2020
, “
Prediction of Reynolds Number Effects on Low-Pressure Turbines Using a High-Order ILES Method
,”
ASME J. Turbomach.
,
142
(
3
), p.
031002
. 10.1115/1.4045776
23.
Fernandez
,
P.
,
Nguyen
,
N.-C.
, and
Peraire
,
J.
,
2017
, “
Subgrid-Scale Modeling and Implicit Numerical Dissipation in DG-Based Large-Eddy Simulation
,”
23rd AIAA Computational Fluid Dynamics Conference
,
Denver, CO
,
June 5–9
, p.
3951
.
24.
Lodato
,
G.
,
2008
, “
Tridimensional Boundary Conditions for Direct and Large-Eddy Simulation of Turbulent Flows. Sub-Grid Scale Modeling for Near-Wall Region Turbulence
,” Thesis,
INSA de Rouen
,
Saint-tienne-du-Rouvray, France
.
25.
Odier
,
N.
,
Poinsot
,
T.
,
Duchaine
,
F.
,
Gicquel
,
L.
, and
Moreau
,
S.
,
2019
, “
Inlet and Outlet Characteristics Boundary Conditions for Large Eddy Simulations of Turbomachinery
,”
ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
.
26.
Giles
,
M.
,
1988
, “
Unsflo: A Numerical Method for Unsteady Inviscid Flow in Turbomachinery
,”
Report #195
,
Cambridge, MA
.
27.
Goldstein
,
D.
,
Handler
,
R.
, and
Sirovich
,
L.
,
1993
, “
Modeling a No-Slip Flow Boundary With an External Force Field
,”
J. Comput. Phys.
,
105
(
2
), pp.
354
366
. 10.1006/jcph.1993.1081
28.
Hallbäck
,
M.
,
Henningson
,
D.
,
Johansson
,
A.
, and
Alfredsson
,
P.
,
2013
, “Large-Eddy Simulations: Theory and Applications,”
Turbulence and Transition Modelling: Lecture Notes From the ERCOFTAC/IUTAM Summerschool Held in Stockholm, 12–20 June, 1995
,
Piomelli
,
U.
,
J. R.
Chasnov
, eds.,
Springer Science Business Media
,
New York
, pp.
269
336
.
29.
Saric
,
W. S.
,
Reed
,
H. L.
, and
Kerschen
,
E. J.
,
2002
, “
Boundary-Layer Receptivity to Freestream Disturbances
,”
Ann. Rev. Fluid Mech.
,
34
(
1
), pp.
291
319
. 10.1146/annurev.fluid.34.082701.161921
30.
Stieger
,
R.
, and
Hodson
,
H.
,
2004
, “
The Transition Mechanism of Highly Loaded Low-Pressure Turbine Blades
,”
ASME J. Turbomach.
,
126
(
4
), pp.
536
543
. 10.1115/1.1773850
31.
Stieger
,
R.
,
Hollis
,
D.
, and
Hodson
,
H.
,
2004
, “
Unsteady Surface Pressures Due to Wake-Induced Transition in a Laminar Separation Bubble on a Low-Pressure Cascade
,”
ASME J. Turbomach.
,
126
(
9
), pp.
544
550
. 10.1115/1.1773851
32.
Ng
,
H.
,
Monty
,
J.
,
Hutchins
,
N.
,
Chong
,
M.
, and
Marusic
,
I.
,
2011
, “
Comparison of Turbulent Channel and Pipe Flows With Varying Reynolds Number
,”
Exp. Fluids
,
51
(
5
), pp.
1261
1281
. 10.1007/s00348-011-1143-x
33.
Rose
,
M. G.
,
Jenny
,
P.
,
Gier
,
J.
, and
Abhari
,
R. S.
,
2013
, “
Experimentally Observed Unsteady Work at Inlet to and Exit From an Axial Flow Turbine Rotor
,”
ASME J. Turbomach.
,
135
(
6
), p.
061017
. 10.1115/1.4023460
34.
Rose
,
M. G.
, and
Marx
,
M.
,
2014
, “
Unsteady Work Transfer Within a Turbine Blade Row Passage
,”
ASME J. Turbomach.
,
136
(
9
), p.
091001
. 10.1115/1.4026601
You do not currently have access to this content.