Abstract

The first-stage turbine of a modern gas turbine is subjected to high thermal loads which lead to a need for aggressive cooling schemes to protect its components from melting. Endwalls are particularly challenging to cool due to the complex system of secondary flows near them that wash the protective film coolants into the mainstream. This paper shows that without including combustor cooling, the complex secondary flow physics is not representative of modern engines. Aggressive injection of all cooling flows upstream of the passage is expected to interact and change passage aerodynamics and, subsequently, mixing and transport of coolants. This study describes, experimentally, the aero-thermal interaction of cooling flows near the endwall of a first-stage nozzle guide vane passage. The test section involves an engine-representative combustor–turbine interface geometry, combustor coolant flow, and endwall film cooling flow injected upstream of a linear cascade. The approach flow conditions represent flow exiting a cooled, low-NOx combustor. This first part of this two-part study aims to understand the complex aerodynamics near the endwall through detailed measurements of passage three-dimensional velocity fields with and without endwall film cooling. The aerodynamic measurements reveal a dominant vortex in the passage, named here as the Impingement Vortex, that opposes the passage vortex formed at the airfoil leading edge plane. This Impingement Vortex completely changes our description of flow over a modern film cooled endwall.

References

1.
Sedney
,
R.
, and
Kitchens
,
C. W.
, Jr.
,
1975
, “
The Structure of Three-Dimensional Separated Flows in Obstacle, Boundary Layer Interactions
,”
AGARD-CP-168 on Flow Separation
, https://apps.dtic.mil/sti/citations/ADA011254
2.
Goldstein
,
R. J.
, and
Karni
,
J.
,
1984
, “
The Effect of a Wall Boundary Layer on Local Mass Transfer From a Cylinder in Crossflow
,”
ASME J. Heat Transfer.
,
106
(
2
), pp.
260
267
.
3.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Gas Turbines Power
,
99
(
1
), pp.
21
28
.
4.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
J. Eng. Power
,
102
(
4
), pp.
866
874
.
5.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
,
110
(
4a
), pp.
862
869
.
6.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
.
7.
Diech
,
M. E.
,
Zaryankin
,
A. D.
,
Filippov
,
G. A.
, and
Zatsepin
,
N. F.
,
1960
, “
Method of Increasing the Efficiency of Turbine Stages With Short Blades
,”
Translation 2816, AEI (Manchester) Limited, Teploenergetika
,
7
(
2
), pp.
18
24
.
8.
Ewen
,
J. S.
,
Huber
,
F. W.
, and
Mitchell
,
J. P.
,
1973
, “
Investigation of the Aerodynamic Performance of Small Axial Turbines
,”
J. Eng. Power
,
95
(
4
), pp.
326
332
.
9.
Morris
,
A. W. H.
, and
Hoare
,
R. G.
,
1975
, “
Secondary Loss Measurements in a Cascade of Turbine Blades With Meridional Wall Profiling
,”
ASME, Paper No. 75-WA/GT-13
.
10.
Blair
,
M. F.
,
1974
, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME J. Heat Transfer
,
96
(
4
), pp.
524
529
.
11.
Goldman
,
L. J.
,
McLallin
K. L.
,
1977
, “
Effect of Endwall Cooling on Secondary Flows in Turbine Stator Vanes
,” AGARD, CPP-214, https://ntrs.nasa.gov/search.jsp?R=19770049387
12.
Sieverding
,
C. H.
, and
Wilputte
,
P.
,
1981
, “
Influence of Mach Number and Endwall Cooling on Secondary Flows in a Straight Nozzle Cascade
,”
J. Eng. Power
,
103
(
2
), pp.
257
263
.
13.
Bario
,
F.
,
LeBoeuf
,
F.
,
Onvani
,
A.
, and
Seddini
,
A.
,
1990
, “
Aerodynamics of Cooling Jets Introduced in the Secondary Flow of a Low Speed Turbine Cascade
,”
ASME J. Turbomach.
,
112
(
3
), pp.
539
546
.
14.
Biesinger
,
T. E.
, and
Gregory-Smith
,
D. G.
,
1993
, “
Reduction in Secondary Flows and Losses in a Turbine Cascade by Upstream Boundary Layer Blowing
,”
Proceedings of the ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
,
Cincinnati, OH
,
May 24–27
, p.
V001T03A055
.
15.
Burd
,
S. W.
, and
Simon
,
T. W.
,
2000
, “
Effects of Slot Bleed Injection Over a Contoured Endwall on Nozzle Guide Vane Cooling Performance: Part I—Flowfield Measurements
,”
Proceedings of the ASME Turbo Expo 2000: Power for Land, Sea, and Air. Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
,
Munich, Germany
,
May 8–11
, p.
V003T01A007
.
16.
Burd
,
S. W.
,
Satterness
,
C. J.
, and
Simon
,
T. W.
,
2000
, “
Effects of Slot Bleed Injection Over a Contoured Endwall on Nozzle Guide Vane Cooling Performance: Part II—Thernal Measurements
,”
Proceedings of the ASME Turbo Expo 2000: Power for Land, Sea, and Air. Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
,
Munich, Germany
,
May 8–11
, p.
V003T01A008
.
17.
Schuepbach
,
P. P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
, and
Gier
,
J. J.
,
2010
, “
Influence of Rim Seal Purge Flow on the Performance of an Endwall-Profiled Axial Turbine
,”
ASME J. Turbomach.
,
133
(
2
),
021011
.
18.
Alqefl
,
M. H.
,
Kim
,
Y. W.
,
Moon
,
H.-K.
,
Zhang
,
L.
, and
Simon
,
T. W.
, “
Aerodynamic Measurements and Analysis in a First Stage Nozzle Guide Vane Passage With Combustor Liner Cooling, Slot Film Cooling and Endwall Contouring
,”
Proceedings of ASME Turbo Expo 2018
, ASME Paper No. GT2018-76345,
Oslo, Norway
.
19.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Zess
,
G. G.
,
2003
, “
Combustor Turbine Interface Studies—Part 1: Endwall Effectiveness Measurements
,”
ASME J. Turbomach.
,
125
(
2
), pp.
193
202
.
20.
Colban
,
W. F.
,
Lethander
,
A. T.
,
Thole
,
K. A.
, and
Zess
,
G. G.
,
2003
, “
Combustor Turbine Interface Studies—Part 2: Flow and Thermal Field Measurements
,”
ASME J. Turbomach.
,
125
(
2
), pp.
203
209
.
21.
Erickson
,
R. D.
,
2010
, “
Experimental Investigation of Disc Cavity Leakage Flow and Hub Endwall Contouring in a Linear Rotor Cascade
,”
M.S., thesis
,
University of Minnesota
,
Minneapolis, MN
, http://hdl.handle.net/11299/90852
22.
Ames
,
F. E.
,
1996
, “
Experimental Study of Vane Heat Transfer and Film Cooling at Elevated Levels of Turbulence
,”
NASA Report No. NASA-CR-198525
, https://ntrs.nasa.gov/citations/19970001773
23.
Chung
,
J. T.
,
1992
, “
Flow and Heat Transfer Experiments in the Turbine Airfoil/Endwall Region
,”
Ph.D., thesis
,
University of Minnesota,
Minneapolis, MN
.
24.
Wang
,
L.
,
1996
, “
A Study of Gas Turbine Flows, Turbulence Generation, and Film Cooling Flow Measurement
,”
M.S., thesis
,
Department of Mechanical Engineering, University of Minnesota,
Minneapolis, MN
.
25.
Alqefl
,
M. H.
,
2019
, “
Aero-Thermal Aspects of Endwall Cooling Flows in a Gas Turbine Nozzle Guide Vane
,”
Ph.D., thesis
,
University of Minnesota,
Minneapolis, MN
.
26.
Perdichizzi
,
A.
,
1990
, “
Mach Number Effects on Secondary Flow Development Downstream of a Turbine Cascade
,”
ASME J. Turbomach
,
112
(
4
), pp.
643
651
.
You do not currently have access to this content.