Abstract

Optimizing the aerothermal performance of the combustor–turbine interface is an important factor in enhancing the efficiency of heavy-duty gas turbines. Also, it is a key requirement to fulfill the lifetime in this hottest area of the gas turbine. Typically transition pieces of can combustors induce a highly nonuniform swirling flow at the turbine inlet. In order to better understand the impact of the nonuniform combustor flow at the first stage vanes, a combined experimental and numerical study was carried out. The experimental facility consisted of a high-speed linear cascade with four vane passages, including an upstream transition piece, which was representative of a heavy-duty gas turbine can combustor–turbine interface geometry. The experiments were conducted at engine representative Mach numbers, and film cooling effectiveness measurements were performed at three different blowing ratios. Computational fluid dynamics (CFD) Reynolds-averaged Navier–Stokes simulations were undertaken using a commercial flow solver. The numerical model was first validated with the experimental data, using inlet traverse five-hole probe measurements, pressure taps along the airfoil perimeter, and oil flow visualization results. The investigation shows that the position of the vane relative to the combustor transition piece has a significant impact on the vane aerodynamics and also film cooling behavior. This understanding was important for a robust first vane aerothermal design of the GT36.

References

1.
Naik
,
S.
,
Krueckels
,
J.
,
Henze
,
M.
,
Hoffman
,
W.
, and
Schnieder
,
M.
,
2017
, “
GT36 Aero-Thermal Development and Validation
,”
ASME Turbo-Expo
,
Charlotte, NC
,
June 26–30
,
GT2017-64404
.
2.
Pennel
,
D.
,
Bothien
,
M.
,
Ciani
,
A.
,
Granet
,
V.
,
Singla
,
G.
,
Thorpe
,
S.
,
Wickstroem
,
A.
,
Oumejjoud
,
K.
, and
Yaquinto
,
M.
,
2017
, “
An Introduction to the Ansaldo GT36 Constant Pressure Sequential Combustor
,”
ASME Turbo-Expo
,
Charlotte, NC
,
June 26–30
,
GT2017-64790
.
3.
Qureshi
,
I.
,
Smith
,
A.
, and
Povey
,
T.
,
2013
, “
HP Vane Aerodynamics and Heat Transfer in the Presence of Aggressive Inlet Swirl
,”
ASME J. Turbomach.
,
135
(
2
), p.
021040
. 10.1115/1.4006610
4.
Giller
,
L.
, and
Schiffer
,
H.-P.
,
2012
, “
Interactions Between the Combustor Swirl and the High Pressure Stator of a Turbine
,”
ASME Turbo-Expo
,
Copenhagen, Denmark
,
June 11–15
,
GT2012-69157
.
5.
Werschnik
,
H.
,
Hilgert
,
J.
,
Bruschewski
,
M.
, and
Schiffer
,
H.-P.
,
2016
, “
Combustor-Turbine Aerothermal Interaction in an Axial Turbine—Influence of Varied Inflow Conditions on Endwall Heat Transfer and Film Cooling Effectiveness
,”
ASME Turbo-Expo
,
Seoul, South Korea
,
June 13–17
,
GT2016-57171
.
6.
Luque
,
S.
,
Kanjirakkad
,
V.
,
Aslanidou
,
I.
,
Lubbock
,
R.
,
Rosic
,
B.
, and
Uchida
,
S.
,
2015
, “
A New Experimental Facility to Investigate Combustor-Turbine Interactions in Gas Turbines With Multiple Can Combustors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
5
), p.
051503
. 10.1115/1.4028714
7.
Perdichizzi
,
A.
,
Abdeh
,
H.
,
Barigozzi
,
G.
,
Henze
,
M.
, and
Krueckels
,
J.
,
2017
, “
Aero-Thermal Performance of a Nozzle Vane Cascade With a Generic Non Uniform Inlet Flow Condition—Part I: Influence of Non Uniformity Location
,”
ASME J. Turbomach.
,
139
(
3
), p.
031002
. 10.1115/1.4034816
8.
Barigozzi
,
G.
,
Abdeh
,
H.
,
Perdichizzi
,
A.
,
Henze
,
M.
, and
Krueckels
,
J.
,
2017
, “
Aero-Thermal Performance of a Nozzle Vane Cascade With a Generic Non Uniform Inlet Flow Condition—Part II: Influence of Purge and Film Cooling Injection
,”
ASME J. Turbomach.
,
139
(
10
), p.
101004
. 10.1115/1.4036437
9.
Abdeh
,
H.
,
Barigozzi
,
G.
,
Perdichizzi
,
A.
,
Henze
,
M.
, and
Krueckels
,
J.
,
2018
, “
Incidence Effect on the Aero-Thermal Performance of a Film Cooled Nozzle Vane Cascade
,”
ASME Turbo-Expo
,
Oslo, Norway
,
June 11–15
,
GT2018-75037
.
10.
Ravelli
,
S.
, and
Barigozzi
,
G.
,
2018
, “
Dynamics of Coherent Structures and Random Turbulence in Pressure Side Film Cooling on a First Stage Turbine Vane
,”
ASME J. Turbomach.
,
141
(
1
), p.
011003
. 10.1115/1.4041602
11.
Colban
,
W.
,
Thole
,
K. A.
, and
Haendler
,
M.
,
2007
, “
Experimental and Computational Comparisons of Fan-Shaped Film Cooling on a Turbine Vane Surface
,”
ASME J. Turbomach.
,
129
(
1
), pp.
23
31
. 10.1115/1.2370747
12.
Charbonnier
,
D.
,
Ott
,
P.
,
Jonsson
,
M.
,
Köbke
,
T.
, and
Cottier
,
F.
,
2008
, “
Comparison of Numerical Investigations With Measured Heat Transfer Performance of a Film Cooled Turbine Vane
,”
ASME Turbo-Expo
,
Berlin, Germany
,
June 9–13
,
GT2008-50623
.
13.
Silieti
,
M.
,
Kassaba
,
A. J.
, and
Divo
,
E.
,
2009
, “
Film Cooling Effectiveness: Comparison of Adiabatic and Conjugate Heat Transfer CFD Models
,”
Int. J. Therm. Sci.
,
48
(
12
), pp.
2237
2248
. 10.1016/j.ijthermalsci.2009.04.007
14.
Harrison
,
K. L.
, and
Bogard
,
D. G.
,
2012
, “
CFD Predictions of Film Cooling Adiabatic Effectiveness for Cylindrical Holes Embedded in Narrow and Wide Transverse Trenches
,”
ASME Turbo Expo
,
Copenhagen, Denmark
,
June 11–15
,
GT2007-28005
.
15.
Naik
,
S.
, and
Lerch
,
A.
,
2018
, “
Film Cooling Characteristics of a High Lift Blade Including Tip and Platform Flow Interactions
,”
ASME Turbo-Expo
,
Oslo, Norway
,
June 11–15
,
GT2018-76710
.
16.
Naik
,
S.
,
Krueckels
,
J.
,
Gritsch
,
M.
, and
Schnieder
,
M.
,
2014
, “
Multirow Film Cooling Performances of a High Lift Blade and Vane
,”
ASME J. Turbomach.
,
136
(
5
), p.
051003
. 10.1115/1.4025274
17.
Krueckels
,
J.
,
Colban
,
W.
,
Gritsch
,
M.
, and
Schnieder
,
M.
,
2011
, “
Validation of a First Vane Platform Cooling Design
,”
ASME Turbo-Expo
,
Vancouver, Canada
,
June 6–10
,
GT2011-45252
.
18.
Abdullah
,
N.
,
Talib
,
A. R. A.
,
Jaafar
,
A. A.
,
Salleh
,
M. A. M.
, and
Chong
,
W. T.
,
2010
, “
The Basics and Issues of Thermochromic Liquid Crystal Calibrations
,”
Exp. Therm. Fluid. Sci.
,
34
(
8
), pp.
1089
1121
. 10.1016/j.expthermflusci.2010.03.011
You do not currently have access to this content.