Abstract

A comprehensive comparison between implicit large eddy simulations (ILES) and experimental results of a modern high-lift low-pressure turbine airfoil has been carried out for an array of Reynolds numbers (Re). Experimental data were obtained in a low-speed linear cascade at the Polytechnic University of Madrid using hot-wire anemometry and laser-Doppler velocimetry (LDV). The numerical code is fourth-order accurate, both in time and space. The spatial discretization of the compressible Navier–Stokes equations is based on a high-order flux reconstruction approach while a fourth-order Runge–Kutta method is used to march in time the simulations. The losses, pressure coefficient distributions, and boundary layer and wake velocity profiles have been compared for an array of realistic Reynolds numbers. Moreover, boundary layer and wake velocity fluctuations are compared for the first time with experimental results. It is concluded that the accuracy of the numerical results is comparable to that of the experiments, especially for integral quantities such as the losses or exit angle. Turbulent fluctuations in the suction side boundary layer and the wakes are well predicted too. The elapsed time of the simulations is about 140 h on 40 graphics processor units. The numerical tool is integrated within an industrial design system and reuses pre- and post-processing tools previously developed for another kind of applications. The trend of the losses with the Reynolds number has a sub-critical regime, where the losses scale with Re−1, and a supercritical regime, where the losses scale with Re−1/2. This trend can be seen both in the simulations and in the experiments.

References

1.
Mayle
,
R. E.
,
1991
, “
The 1991 IGTI Scholar Lecture: The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(
4
), pp.
509
536
. 10.1115/1.2929110
2.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
Bladerow Interactions, Transition, and High-Lift Aerofoils in Low-Pressure Turbines
,”
Annu. Rev. Fluid Mech.
,
37
, pp.
71
98
. 10.1146/annurev.fluid.37.061903.175511
3.
Coull
,
J. D.
, and
Hodson
,
H. P.
,
2011
, “
Unsteady Boundary-Layer Transition in Low-Pressure Turbines
,”
J. Fluid Mech.
,
681
, pp.
370
410
. 10.1017/jfm.2011.204
4.
Ameri
,
A.
,
2018
, “
Implicit-LES Simulation of Variable-Speed Power Turbine Cascade for Low Free-Stream Turbulence Conditions
,”
ASME Turbo Expo: Power for Land, Sea, and Air Volume 2B: Turbomachinery
,
Oslo, Norway
,
June 11–15
,
American Society of Mechanical Engineers
, p.
V02BT41A032
.
5.
Cui
,
J.
,
Rao
,
V. N.
, and
Tucker
,
P.
,
2016
, “
Numerical Investigation of Contrasting Flow Physics in Different Zones of a High-Lift Low-Pressure Turbine Blade
,”
ASME J. Turbomach.
,
138
(
1
), p.
011003
. 10.1115/1.4031561
6.
Hammer
,
F.
,
Sandham
,
N. D.
, and
Sandberg
,
R. D.
,
2018
, “
The Influence of Different Wake Profiles on Losses in a Low Pressure Turbine Cascade
,”
Int. J. Turbomach. Propul. Power
,
3
(
2
), p.
10
. 10.3390/ijtpp3020010
7.
Kalitzin
,
G.
,
Wu
,
X.
, and
Durbin
,
P. A.
,
2003
, “
DNS of Fully Turbulent Flow in a LPT Passage
,”
Int. J. Heat Fluid Flow
,
24
(
4
), pp.
636
644
. 10.1016/S0142-727X(03)00057-2
8.
Lou
,
W.
, and
Hourmouziadis
,
J.
,
2000
, “
Separation Bubbles Under Steady and Periodic-Unsteady Main Flow Conditions
,”
ASME J. Turbomach.
,
122
(
4
), pp.
634
643
. 10.1115/1.1308568
9.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
,
2010
, “
Transition Mechanisms in Separation Bubbles Under Low-and Elevated-Freestream Turbulence
,”
ASME J. Turbomach.
,
132
(
1
), p.
011004
. 10.1115/1.2812949
10.
Medic
,
G.
, and
Sharma
,
O.
,
2012
, “
Large-Eddy Simulation of Flow in a Low-Pressure Turbine Cascade
,”
ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
,
Copenhagen, Denmark
,
June 11–15
,
American Society of Mechanical Engineers
, pp.
1239
1248
.
11.
Michelassi
,
V.
,
Wissink
,
J. G.
,
Föhlich
,
J.
, and
Rodi
,
W.
,
2003
, “
Large-Eddy Simulation of Flow Around Low-Pressure Turbine Blade W ith Incoming Wakes
,”
AIAA J.
,
41
(
11
), pp.
2143
2156
. 10.2514/2.6832
12.
Sandberg
,
R.
,
Pichler
,
R.
, and
Chen
,
L.
,
2012
, “
Assessing the Sensitivity of Turbine Cascade Flow to Inflow Disturbances Using Direct Numerical Simulation
,”
13th International Symposium for Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity in Turbomachinery (ISUAAAT)
,
Tokyo, Japan
,
Sept. 11–14
.
13.
Wu
,
X.
, and
Durbin
,
P. A.
,
2001
, “
Evidence of Longitudinal Vortices Evolved From Distorted Wakes in a Turbine Passage
,”
J. Fluid Mech.
,
446
, pp.
199
228
. 10.1017/S0022112001005717
14.
Mansour
,
M. L.
,
Konan
,
S. M.
, and
Goswami
,
S.
,
2007
, “
Prediction of Lapse Rate in Low Pressure Turbines With and Without Modeling of the Laminar-Turbulent Transition
,”
ASME Turbo Expo 2007: Power for Land, Sea, and Air
,
Montreal, Canada
,
May 14–17
,
American Society of Mechanical Engineers
, pp.
1189
1197
.
15.
Lyall
,
M. E.
,
King
,
P. I.
,
Sondergaard
,
R.
,
Clark
,
J. P.
, and
McQuilling
,
M. W.
,
2012
, “
An Investigation of Reynolds Lapse Rate for Highly Loaded Low Pressure Turbine Airfoils With Forward and Aft Loading
,”
ASME J. Turbomach.
,
134
(
5
), p.
051035
. 10.1115/1.4004826
16.
Hura
,
H. S.
,
Joseph
,
J.
, and
Halstead
,
D. E.
,
2012
, “
Reynolds Number Effects in a Low Pressure Turbine
,”
ASME Turbo Expo: Power for Land, Sea, and Air, Volume 8: Turbomachinery, Parts A, B, and C
,
Copenhagen, Denmark, June 11–15.
17.
Moura
,
R.
,
Sherwin
,
S.
, and
Peiró
,
J.
,
2015
, “
Linear Dispersion–Diffusion Analysis and Its Application to Under-Resolved Turbulence Simulations Using Discontinuous Galerkin Spectral/hp Methods
,”
J. Comput. Phys.
,
298
, pp.
695
710
. 10.1016/j.jcp.2015.06.020
18.
Mengaldo
,
G.
,
De Grazia
,
D.
,
Moura
,
R. C.
, and
Sherwin
,
S. J.
,
2018
, “
Spatial Eigensolution Analysis of Energy-Stable Flux Reconstruction Schemes and Influence of the Numerical Flux on Accuracy and Robustness
,”
J. Comput. Phys.
,
358
, pp.
1
20
. 10.1016/j.jcp.2017.12.019
19.
Gisbert
,
F.
,
Bolinches-Gisbert
,
M.
,
Pueblas
,
J.
, and
Corral
,
R.
,
2018
, “
Efficient Implementation of Flux Reconstruction Schemes for the Simulation of Compressible Viscous Flows on Graphics Processing Units
,”
Tenth International Conference on Computational Fluid Dynamics (ICCFD10)
,
No. ICCFD10-307
.
20.
Corral
,
R.
,
Gisbert
,
F.
, and
Pueblas
,
J.
,
2017
, “
Execution of a Parallel Edge-Based Navier-Stokes Solver on Commodity Graphics Processor Units
,”
Int. J. Comput. Fluid Dyn.
,
31
(
2
), pp.
93
108
. 10.1080/10618562.2017.1294686
21.
Huynh
,
H. T.
,
2007
, “
A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods
,”
18th AIAA Computational Fluid Dynamics Conference
,
Miami, FL
,
June 25–28
.
22.
Wang
,
Z.
, and
Gao
,
H.
,
2009
, “
A Unifying Lifting Collocation Penalty Formulation Including the Discontinuous Galerkin, Spectral Volume/Difference Methods for Conservation Laws on Mixed Grids
,”
J. Comput. Phys.
,
228
(
21
), pp.
8161
8186
. 10.1016/j.jcp.2009.07.036
23.
Lodato
,
G.
,
2008
, “
Tridimensional Boundary Conditions for Direct and Large-Eddy Simulation of Turbulent Flows. Sub-Grid Scale Modeling for Near-Wall Region Turbulence
,”
Theses
,
INSA de Rouen
,
Saint-tienne-du-Rouvray
.
24.
Fernandez
,
P.
,
Nguyen
,
N.-C.
, and
Peraire
,
J.
,
2017
, “
Subgrid-Scale Modeling and Implicit Numerical Dissipation in DG-Based Large-Eddy Simulation
,”
23rd AIAA Computational Fluid Dynamics Conference
,
Denver, Colorado
,
June 5–9
, p.
3951
.
25.
Schulte
,
V.
, and
Hodson
,
H. P.
,
1998
, “
Unsteady Wake-Induced Boundary Layer Transition in High Lift Lp Turbines
,”
ASME J. Turbomach.
,
120
(
1
), pp.
28
35
. 10.1115/1.2841384
26.
Cassinelli
,
A.
,
Montomoli
,
F.
,
Adami
,
P.
, and
Sherwin
,
S. J.
,
2018
, “
High Fidelity Spectral/HP Element Methods for Turbomachinery
,”
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15
,
American Society of Mechanical Engineers
, p.
V02CT42A020
.
27.
Hallbäck
,
M.
,
Henningson
,
D.
,
Johansson
,
A.
, and
Alfredsson
,
P.
,
2013
,
Turbulence and Transition Modelling: Lecture Notes From the ERCOFTAC/IUTAM Summerschool Held in Stockholm, 12–20 June, 1995
, Vol.
2
,
Springer Science & Business Media
,
New York
.
28.
Giles
,
M.
,
1991
, “
UNSFLO: A Numerical Method for the Calculation of Unsteady Flow in Turbomachinery
,”
Technical Report
,
Gas Turbine Laboratory, Massachusetts Institute of Technology
,
Cambridge, MA
.
29.
Serna
,
J.
, and
Lázaro
,
B.
,
2015
, “
On the Bursting Condition for Transitional Separation Bubbles
,”
Aerosp. Sci. Technol.
,
44
, pp.
43
50
. 10.1016/j.ast.2014.10.010
30.
Lázaro
,
B. J.
,
González
,
E.
,
Cadrecha
,
D.
,
Antoranz
,
A.
, and
Parra
,
J.
,
2017
, “
Low Reynolds Number Response of High Efficiency, Intermediate Pressure Compressor Profiles
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
.
You do not currently have access to this content.